Errata in Physical Mathematics

Kevin Cahill

February 8, 2024

Errata of Second Edition

Chapter 1

In Section 1.5, on page 10, in equation 1.63: The index ℓ should be k.
In Section 1.5, on page 11, equation 1.70 should be

$$
\operatorname{Tr}\left(a^{\prime}\right)=\operatorname{Tr}\left(u^{-1} a u\right)=\operatorname{Tr}\left(a u u^{-1}\right)=\operatorname{Tr}(a) .
$$

(Thanks to Spencer Dimitroff.)
On page 58 in the sentence that contains equation (1.351), all three instances of $R_{\ell}^{(d)}$ should be $R_{\ell \ell}^{(d)}$, and $\hat{R}_{\ell}^{(d)}$ should be $\hat{R}_{\ell \ell}^{(d)}$.

On page39, there are two typos: in equation $\left.1.236 x\left(y_{1}, y_{2}\right)\right)$ should be $x\left(y_{1}, y_{2}\right)$, and in equation $1.239 x(\vec{y})$) should be $x(\vec{y})$.

On page 83 , a better statement of exercise 1.40 of Chapter 1 is:
The coherent state $|\{\alpha(\boldsymbol{k}, \ell)\}\rangle$ is an eigenstate of the annihilation operator $a(\boldsymbol{k}, \ell)$ with eigenvalue $\alpha(\boldsymbol{k}, \ell)$ for each wavenumber \boldsymbol{k} and polarization ℓ

$$
a(\boldsymbol{k}, \ell)|\{\alpha(\boldsymbol{k}, \ell)\}\rangle=\alpha(\boldsymbol{k}, \ell)|\{\alpha(\boldsymbol{k}, \ell)\}\rangle .
$$

The positive-frequency part $E_{i}^{(+)}(t, \boldsymbol{x})$ of the electric field is a sum over \boldsymbol{k} and ℓ

$$
E_{i}^{(+)}(t, \boldsymbol{x})=\sum_{k} \sum_{\ell=1}^{2} a(\boldsymbol{k}, \ell) e_{i}(\boldsymbol{k}, \ell) e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}
$$

in which $\boldsymbol{e}(\boldsymbol{k}, \ell)=\boldsymbol{k} \times \boldsymbol{\epsilon}(\boldsymbol{k}, \ell)$ and $\boldsymbol{\epsilon}(\boldsymbol{k}, \ell)$ is proportional to a polarization vector. Show that $\left|\left\{\alpha_{k}\right\}\right\rangle$ is an eigenstate of $E_{i}^{(+)}(t, \boldsymbol{x})$ as in (1.490) and find its eigenvalue $\mathcal{E}_{i}^{(+)}(t, \boldsymbol{x})$.

Chapter 2

On page 85 , between equations (2.10) and (2.11)

$$
\hat{\boldsymbol{e}}_{j}=\boldsymbol{e} / h_{j} \quad \text { should be } \quad \hat{\boldsymbol{e}}_{j}=\boldsymbol{e}_{j} / h_{j}
$$

On page 89, equation 2.36 should be (Thanks to Spencer Dimitroff)

$$
\boldsymbol{E}=\hat{\boldsymbol{r}} \frac{\rho R}{3 \epsilon_{0}}=\hat{\boldsymbol{r}} \frac{b}{R^{2}},
$$

and equation 2.38 should be

$$
\boldsymbol{d} \boldsymbol{S}=h_{i} \hat{\boldsymbol{e}}_{i} d u_{i} \times h_{j} \hat{\boldsymbol{e}}_{j} d u_{j}=\sum_{k=1}^{3} \epsilon_{i j k} \hat{\boldsymbol{e}}_{k} h_{i} h_{j} d u_{i} d u_{j}
$$

Chapter 3

On page 102 in line 2 of section 3.5, $\exp (i 2 \pi n x / \sqrt{L})$ should be $\exp (i 2 \pi n x / L) / \sqrt{L}$.
On page 105 in the line after equation 3.65, "(7.370)" should be "(3.2)."
On page 114 in the top line, $c_{2}=0$ should be $f_{2}=0$.
On page 116 in the line immediately after equation (3.113), $c_{2 n}=0$ should be $f_{2 n}=0$.

On page 124, equation 3.161 should be

$$
\exp (i a \boldsymbol{n} \cdot \boldsymbol{p} / \hbar) H \exp (-i a \boldsymbol{n} \cdot \boldsymbol{p} / \hbar)=H
$$

and $e^{i a n \cdot p}$ should be $e^{i a n \cdot p / \hbar}$ twice in the next line and also just before equation 3.162. Also on page 124 in equation $3.163, e^{i a k \cdot n / \hbar}$ should be $e^{i a k \cdot n}$.

Chapter 4

On page 135 of Section 4.3, equation 4.49 of Example 4.4 should be

$$
\delta(g(x))=-\frac{\delta^{\prime}\left(x-x_{0}\right)}{\left|g^{\prime \prime}\left(x_{0}\right)\right|}
$$

and as noted there, this relation holds only if x_{0} is the only root of $g(x)$ and $g\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)=0$, and if $f \in C^{1}$ and $f\left(x_{0}\right)=0$.

Section 4.10, example 4.13, page 147: In equations 4.135-4.139, the prefactor τ should be τ^{-1}. The last line of equation 4.138 is then

$$
L(t)=\frac{\sin (\omega t)-\omega \tau \cos (\omega t)}{1+(\omega \tau)^{2}}
$$

Chapter 5

On page 171 in equation 5.95 of example 5.12 of Section 5.9, each of the two occurrences of $\hbar E$ should be $2 \hbar E$.

Chapter 6

On page 186, equations 6.11 and 6.12 should be

$$
f(z)=\frac{1}{z-z_{0}}=\frac{z^{*}-z_{0}^{*}}{\left|z-z_{0}\right|^{2}}=\frac{x-x_{0}-i\left(y-y_{0}\right)}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
$$

and

$$
u(x, y)=\frac{x-x_{0}}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \quad \text { and } \quad v(x, y)=\frac{-\left(y-y_{0}\right)}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
$$

Consequently, on page 187, equation 6.14 should be

$$
\frac{\partial v(x, y)}{\partial x}=\frac{2\left(x-x_{0}\right)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{2}}=-\frac{\partial u(x, y)}{\partial y}
$$

(Thanks to Professor Kevin Beach for these corrections.)

On page 255 in example 6.39, the denominator of the integral in equation 6.225 should be

$$
\left(z-e^{i \pi / 3}\right)\left(z-e^{3 i \pi / 3}\right)\left(z-e^{5 i \pi / 3}\right) .
$$

On page 199 of Section 6.7, equation 6.72 should read

$$
\sum_{n=0}^{\infty} \frac{\left|z-z_{0}\right|^{n}}{n!}\left|f^{(n)}\left(z_{0}\right)\right| \leq M \sum_{n=0}^{\infty} \frac{\left|z-z_{0}\right|^{n}}{R^{n}}
$$

Chapter 7

On page 248, the first two lines of the second paragraph should be:
An equation of the form

$$
L f(x) \equiv \sum_{j=0}^{n} h_{j}(x) \frac{d^{j} f(x)}{d x^{j}}=0
$$

In the fourth line on page 254 in example 7.7 of Section 7.3 , the inline equation for $f(\rho, \phi, z)$ should be

$$
f(\rho, \phi, z)=J_{n}(\alpha \rho) e^{i n \phi} e^{\alpha z}
$$

Also on page 254, the first sentence after equation 7.35 should be: The first and last terms are functions of r, and the two middle terms are functions of θ.

On page 255 of Section 7.3, the first part of line 3 should read $p x=$ $\boldsymbol{p} \cdot \boldsymbol{x}-p^{0} x^{0}=\boldsymbol{p} \cdot \boldsymbol{x}-E t$. Also on page 255 , equation 7.39 should be

$$
\partial_{a} f=\frac{\partial f}{\partial x^{a}} \quad \text { and } \quad \partial^{a} f=\frac{\partial f}{\partial x_{a}}, \quad \text { so } \quad \partial^{0} f=-\partial_{0} f .
$$

On page 265 the sentence between equations 7.114 and 7.115 should read "Like the internal energy, the entropy $S(U, V, N)$ of an ideal gas is a firstdegree homogeneous function of U, V, and N."

On page 267 in line 5 of example 7.22 , the equation should be

$$
E=-m e^{4} / 2=-\frac{1}{2} m c^{2}\left(e^{2} / \hbar c\right)^{2}=-13.6 \mathrm{eV}
$$

Also on page 267 in example $7.24, V(r)=\sum_{k} m_{k} \omega_{k}^{2} \boldsymbol{r}_{k}^{2}$ should be $V(r)=$ $\sum_{k} \frac{1}{2} m_{k} \omega_{k}^{2} \boldsymbol{r}_{k}^{2}$.

On page 272 of Section $7.13, p_{k}$ s should be p_{k} 's (thanks to Professor Kevin Beach), and equation 7.167 should be

$$
\frac{d S}{d t}=L=\frac{\partial S}{\partial t}+\sum_{i} \frac{\partial S}{\partial q_{i}} \dot{q}_{i}=\frac{\partial S}{\partial t}+\sum_{i} p_{i} \dot{q}_{i} .
$$

On page 279, the second line should be, "in which $x_{1}=\dot{x}_{2}, x_{2}=\dot{x}_{3}$, and $x_{3}=x$."

On page 281 of Section 7.20 , equation 7.217 should be

$$
0=\sum_{k=0}^{n} c_{k} t^{n-k} \frac{d^{k} y}{d t^{k}}
$$

On page 286, just below equation 7.241 of Section $7.24, h_{0}=1$ should be $h_{2}=-1$.

On page 293
On page 295, in the first line of Section 7.32, the word 'homogeneous' should be omitted.

On page 297 in equation 7.310 of Section $7.33,1-x^{2}$ should be $1-x^{\prime 2}$.
On page 318 in equation 7.446 of Section 7.41 , $\delta_{n \ell}$ should be $\delta_{n k}$.
In line 2 on page $328, a^{2}=r t$ should be $a^{2}=r^{2} t$.
On page 331, in the statement of exercise $7.2, P_{n}(\rho)$ should be $P_{k n}(\rho)$.

Chapter 8

On page 341, the first two integrals lack " $=0$ " and should read

$$
\begin{aligned}
& \int_{C}\left[-K_{w} v^{\prime}+\lambda^{2} K v+\frac{d K_{w} v}{d w}\right] d w=0 \\
& \int_{C}\left[K\left(v^{\prime \prime}+\lambda^{2} v\right)+\frac{d\left(K_{w} v-K v^{\prime}\right)}{d w}\right] d w=0
\end{aligned}
$$

Chapter 9

On page 355 in the second line of Section $9.10, \alpha=0$ should be $k=0$.
On page 360 in the last sentence of the first paragraph of Section 9.14, the words "is usually (and inexplicably) called recombination" should be "is called decoupling."

On page 362 equation 9.128 of Section 9.14 should be

$$
\frac{3.8 \times 10^{5} \times 1100 \times 180^{\circ}}{\sqrt{3} \times 13.8 \times 10^{9} \times \pi}=1.0^{\circ}
$$

and in the following three sentences "one degree" and " 1° " should be " 0.6°."
On page 362, please replace the last paragraph with
We can learn a lot from the data in the CMB Figure 9.4. The radius of the maximum gravitationally compressed region at decoupling is related to the speed of "sound" in the plasma, which is nearly $c / \sqrt{3}$. The expansion of the universe since transparency has stretched the wavelength of light and reduced its temperature from 3000 K to 2.7255 K , an expansion factor $z \approx$ $3000 / 2.7255 \approx 1100$. The radius of the maximum compressed region is now longer by 1100 . So is our distance from the surface of last scattering. A careful analysis based on general relativity and a model of a flat $(k=0)$ universe with cold dark matter and dark energy gives the solid curve in Fig. 9.4 which fits the CMB data for multipole moments greater than 30 . The model and the data put the maximum of the power spectrum D_{ℓ} at $\ell \sim 200$ and at an angle of 0.6°. This agreement tells us that space is flat. For if the universe were closed $(k=1)$, then the angle would appear bigger; and if it were open ($k=-1$), it would appear smaller. The heights and locations of the peaks in Fig. 9.4 tell us about the density of baryons, the density of dark matter, and much more (Aghanim et al., 2018).

An elementary introduction to the CMB, cold dark matter, and dark energy is provided by the paper "Flat space, dark energy, and the cosmic microwave background" (Eur. J. Phys. 41 (2020) 3, 035603 \& e-print 2002.11464).

Chapter 10

On page 367 between equations 10.11 and 10.13, $v^{\prime}(k x)$ should be $v^{\prime}(x) ; v(k b)$ should be $v(b)$; and three instances of $v(k x)$ should be $v(x)$.

On page 370 in example 10.1: on the line after equation $10.27, \sin (n(\theta-$ $\left.\theta_{0}\right)$) should be $\sin \left(n \theta-\theta_{n}\right)$; in equation 10.29, x should be r; and in equation 10.30, $\sin \left[n\left(\theta-\theta_{0}\right)\right]$ should be $\sin \left(n \theta-\theta_{n}\right)$.

On page 375, in example 10.3, in the first line of the first paragraph after equation $10.61, B_{z}$ should be B^{z}; and in the first line of the first paragraph after equation $10.63, E_{z}$ should be E^{z}.

On page 376 in the penultimate line of example 10.4, the TM mode should have a cosine, not a sine:

$$
E^{z}=J_{n}\left(z_{n, m} \rho / r\right) e^{i n \phi} \cos (\pi \ell z / h) e^{-i \omega t}
$$

On page 377, the first words of the sentence enclosing equation (10.73) should be, "The series expansion (10.10) for $J_{\ell+1 / 2}$."

On page 381, in equation 10.96, the last term should include a sum over m

$$
=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \sqrt{\frac{2}{\pi}} i^{\ell} j_{\ell}(k r) Y_{\ell, m}(\theta, \phi) Y_{\ell, m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)
$$

The same sum over m is needed in the last term of equation 10.125 of exercise 10.26 on page 388 . Also on page 381 in the first line after equation 10.97 "tiny k " should be "tiny $k r$."

On page 384 in example 10.7 before equation 10.110, the electric field $\boldsymbol{E}(\rho, \phi) \exp (i(k z-\omega t))$ should be $E^{z}(\rho) e^{i n \phi} \exp (i(k z-\omega t))$, and in equation $10.110, E^{z}(\rho, \phi)$ should be $E^{z}(\rho)$. Similarly, in equation 10.111 , the three occurrences of $\left(r_{0}, \phi\right)$ should be three occurrences of $\left(r_{0}\right)$.

On page 386 in the last line of the first complete paragraph of example 10.8 "four times" should be "twice."

On page 389 in exercise $10.28, E_{z}\left(r_{0}, \phi\right)$ should be $E^{z}\left(r_{0}\right)$, and $E_{z}(r, \phi)$ should be $E^{z}(r)$.

Chapter 11

On page 406, Section 11.16, in equation 11.68, $f_{a b}^{c}$ should be $i f^{c}{ }_{a b}$, so that equation should read

$$
\left[t_{a}, t_{b}\right]=\sum_{c=1}^{n} i f_{a b}^{c} t_{c} \quad \text { and } \quad\left[t_{a}^{\prime}, t_{b}^{\prime}\right]=\sum_{c=1}^{n} i f_{a b}^{c} t_{c}^{\prime} .
$$

Similarly, on page 407, equation 11.70 should be

$$
\left[t_{a}, t_{b}\right]=i f_{a b}^{c} t_{c} \quad \text { and } \quad\left[t_{a}^{\prime}, t_{b}^{\prime}\right]=i f_{a b}^{c} t_{c}^{\prime}
$$

On page 416, in Section 11.21, in the last line of Example 11.21

$$
\frac{2 \ell+1}{4 \pi} \text { should be } \frac{4 \pi}{2 \ell+1}
$$

as in the statement (9.123) of the addition theorem.

Chapter 12

On page 452 just before equation 12.6, "explcity" should be "explicitly."
Incidentally, in matrix notation left indexes label rows, and right indexes label columns. Transposition interchanges rows and column indexes as in

$$
L^{\top^{a}}{ }_{b}=L_{b}{ }^{a} \quad \text { and } \quad L^{\top}{ }_{b}^{a}=L^{a}{ }_{b} .
$$

On page 475 , the sentence surrounding equation 13.42 should read:
The semi-euclidian d-dimensional dot products of the tangent vectors of an n-dimensional semi-riemannian manifold define its metric for $0 \leq i, k \leq n-1$ as

$$
\begin{aligned}
g_{i k}(x) & =e_{i}(x) \cdot e_{k}(x)=-\sum_{\alpha=1}^{u} e_{i}^{\alpha}(x) e_{k}^{\alpha}(x)+\sum_{\alpha=u+1}^{d} e_{i}^{\alpha}(x) e_{k}^{\alpha}(x) \\
& =e_{i \alpha}(x) e_{k}^{\alpha}(x)=e_{i}^{\alpha}(x) e_{\alpha k}(x)
\end{aligned}
$$

Chapter 13

On page 473, some of the i 's should have been k 's in equation 13.36 which should be

$$
\begin{aligned}
d s^{2} & =d p(x) \cdot d p(x)=\left(e_{i}(x) d x^{i}\right) \cdot\left(e_{k}(x) d x^{k}\right) \\
& =e_{i}(x) \cdot e_{k}(x) d x^{i} d x^{k}=g_{i k}(x) d x^{i} d x^{k}
\end{aligned}
$$

On line 5 of page $475 d$ should be n, and right after equation $13.42, d-1$ should be 3 . Still on page 475 , some of the i 's should have been k 's in equation 13.43 which should be

$$
\begin{aligned}
d s^{2} & =d p(x) \cdot d p(x)=\left(e_{i}(x) d x^{i}\right) \cdot\left(e_{k}(x) d x^{k}\right) \\
& =e_{i}(x) \cdot e_{k}(x) d x^{i} d x^{k}=g_{i k}(x) d x^{i} d x^{k}
\end{aligned}
$$

On page 479 in example 13.9, there should be a semicolon in the second term of equation 13.69 which should be

$$
D_{\ell} e_{i}=e_{i ; \ell}=e_{i, \ell}-e_{i, \ell} \cdot e^{k} e_{k}=e_{i, \ell}-e_{i, \ell}=0
$$

Similarly, on page 480 in example 13.12, there should be a semicolon in the last term of the first of the three equations 13.77 which should read

$$
D_{\ell}\left(A_{i} B_{k}\right)=\left(A_{i} B_{k}\right) ; \ell=A_{i ; \ell} B_{k}+A_{i} B_{k ; \ell}
$$

In standard general relativity, the Christoffel symbols are those of the Levi-Civita connection (13.87)

$$
\Gamma_{i \ell}^{k}=\frac{1}{2} g^{k j}\left(g_{j i, \ell}+g_{j \ell, i}-g_{i \ell, j}\right)
$$

which is symmetric in its lower indices

$$
\Gamma_{i \ell}^{k}=\Gamma_{\ell i}^{k} .
$$

I assumed this symmetry when writing several of the formulas of the section on curvature (13.23). In order to make these formulas consistent with nonstandard general relativity, I am restating them here:

On page 485, equations 13.97 and 13.98 should be

$$
\Delta V_{i}=a^{2}\left[\Gamma^{k}{ }_{i n, \ell}-\Gamma_{i \ell, n}^{k}+\Gamma_{m \ell}^{k} \Gamma^{m}{ }_{i n}-\Gamma_{m n}^{k} \Gamma^{m}{ }_{i \ell}\right] V_{k}
$$

and

$$
R_{i \ell n}^{k}=\Gamma_{i n, \ell}^{k}-\Gamma_{i \ell, n}^{k}+\Gamma_{m \ell}^{k} \Gamma_{i n}^{m}-\Gamma_{m n}^{k} \Gamma_{i \ell}^{m} .
$$

Equations 13.100 and 13.101 should be

$$
\begin{aligned}
D_{n} D_{\ell} V_{i}= & D_{n}\left(V_{i, \ell}-\Gamma^{k}{ }_{i \ell} V_{k}\right) \\
= & V_{i, \ell n}-\Gamma^{k}{ }_{i \ell, n} V_{k}-\Gamma^{k}{ }_{i \ell} V_{k, n} \\
& -\Gamma^{j}{ }_{i n}\left(V_{j, \ell}-\Gamma^{m}{ }_{j \ell} V_{m}\right)-\Gamma^{m}{ }_{\ell n}\left(V_{i, m}-\Gamma^{q}{ }_{i m} V_{q}\right)
\end{aligned}
$$

and

$$
\left[D_{n}, D_{\ell}\right] V_{i}=\left(\Gamma_{i n, \ell}^{k}-\Gamma_{i \ell, n}^{k}+\Gamma_{m \ell}^{k} \Gamma_{i n}^{m}-\Gamma_{m n}^{k} \Gamma_{i \ell}^{m}\right) V_{k}=R_{i \ell n}^{k} V_{k} .
$$

The matrix 13.102 should be

$$
\Gamma_{\ell}=\left(\begin{array}{llll}
\Gamma_{0 \ell}^{0} & \Gamma_{1 \ell}^{0} & \Gamma^{0}{ }_{2 \ell} & \Gamma^{0}{ }_{3 \ell} \\
\Gamma_{0 \ell}^{1} & \Gamma^{1}{ }_{1 \ell} & \Gamma^{1}{ }_{2 \ell} & \Gamma^{1}{ }_{3 \ell} \\
\Gamma^{2}{ }_{0 \ell} & \Gamma^{2} & \Gamma^{2} & { }_{2 \ell} \\
\Gamma^{3}{ }_{0 \ell}^{2} & \Gamma^{3}{ }_{1 \ell} & \Gamma^{3}{ }_{2 \ell} & \Gamma^{3}{ }_{3 \ell}
\end{array}\right) .
$$

On page 490 in example 13.17 in the first line after equation 13.136, $r=L \sinh \chi / a$ should be $r=L \sinh \chi$.

On page 500, equations 13.199-201 are in natural units. In MKS units, they are

$$
\begin{aligned}
S & =\frac{1}{2} \int\left(-\phi_{, i} g^{i k} \phi_{, k}-(c m / \hbar)^{2} \phi^{2}\right) \sqrt{g} d^{4} x \\
\delta S & =\int \delta \phi\left[\left(\sqrt{g} g^{i k} \phi_{, k}\right)_{, i}-(c m / \hbar)^{2} \sqrt{g} \phi\right] d^{4} x
\end{aligned}
$$

and

$$
\left(\sqrt{g} g^{i k} \phi_{, k}\right)_{, i}-(c m / \hbar)^{2} \sqrt{g} \phi=0 .
$$

On page 507, the last sentence of Section 13.36 should be replaced by: "In flat space, this equation says that the energy and momentum of the
matter fields are conserved, $0=T_{, k}^{i k}$. The analog of $T^{a b}$ for the gravitational field is not a tensor; it's a pseudotensor $t^{a b}$ (Dirac, 1975). The divergence of $\left(T^{a b}+t^{a b}\right) \sqrt{g}$ vanishes because the action does not depend upon an external spacetime point. But the spatial integrals for the energy and momentum of the gravitational field may lie at infinity or diverge." The reference is to pages 58-63 of Dirac's book, General Theory of Relativity.

On page 510 in the first sentence of section $13.41, J=G M a / c$ should be $J=M c a$, and in equation 13.254, each of the two $d t$'s should be $c d t$. The quantity Q^{2} is the square of the charge in Coulombs q^{2} multiplied by factors, all unity in Planck units, that give q^{2} the dimension of length squared

$$
Q^{2}=\frac{G q^{2}}{\left(4 \pi \epsilon_{0} c^{4}\right)}
$$

Another way of writing equation 13.254 is

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 G M r / c^{2}-Q^{2}}{\rho^{2}}\right) c^{2} d t^{2}-\frac{2 a \sin ^{2} \theta\left(2 G M r / c^{2}-Q^{2}\right)}{\rho^{2}} c d t d \phi \\
& +\frac{\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta}{\rho^{2}} \sin ^{2} \theta d \phi^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}
\end{aligned}
$$

in which $\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta$ and $\Delta=r^{2}+a^{2}-2 M G r / c^{2}+Q^{2}$.
On page 513 in the last line of equation 13.267 , the exponent 3 should be 2 so that the line reads

$$
R_{t t}=R_{00}=\left[D_{k}, D_{0}\right]_{0}^{k}=-3(\dot{a} / a)_{, 0}-3(\dot{a} / a)^{2}=-3 \ddot{a} / a .
$$

At the bottom of page 514, the sentence surrounding equation 13.278 should read: A universe with $k=0$ has no explicit curvature, so its mass density ρ is always $\rho=3 H^{2} / 8 \pi G$. For an arbitrary universe, this ratio at the present time t_{0} is called the critical mass density

$$
\rho_{c} \equiv \frac{3 H_{0}^{2}}{8 \pi G}
$$

Throughout section 13.45 , the critical mass density $\rho_{c 0}$ should be simply ρ_{c}.
On page 515 , the first line of Section 13.44 should be, "For $i=0$, the vanishing of the covariant divergence of the energy-momentum tensor (13.236)
is." Also on page 515 , the second word after equation 13.281 should be "mass," not "energy." Still on page 515, in the first line after equation 13.284, "dark-energy density ρ_{Λ} " should be "mass density ρ_{Λ} of dark-energy."

In the first line of page $520, \Omega_{r}=0.6889$ should be $\Omega_{r}=9.0824 \times 10^{-5}$ (as in equation 13.293). Also on page 520 in the last sentence of the first paragraph of Section 13.47, the words "recombination, a term that makes sense only if the universe is cyclic" should be "decoupling."

On page 521 of Section 13.47 , the term $+a\left(t_{m}\right)$ should be added to the right-hand side of the second of equations 13.306 so that it reads

$$
a(t)=\left(\frac{3 H_{0} \sqrt{\Omega_{m}}\left(t-t_{m}\right)}{2}\right)^{2 / 3}+a\left(t_{m}\right)
$$

Also, the clause after it should read, "in which t is a time well inside the era of matter and $t_{m} \sim 50,000$ years."

On page 526, in Section 13.51, equation 13.319 should be

$$
D_{\ell} c^{a}{ }_{k}=c^{a}{ }_{k, \ell}-\Gamma^{j}{ }_{k \ell} c^{a}{ }_{j}+\omega^{a}{ }_{b \ell} c^{b}{ }_{k}^{b} .
$$

And in the sentence that contains equation 13.322, "So too the spin connection $\omega^{a}{ }_{b \ell}$ is defined so as" should be "Similarly Cartan defined the spin connection $\omega^{a}{ }_{b \ell}$ so as."

On page 529 in the last sentence of section 13.52, the covariant derivative should be $D_{\ell}=\partial_{\ell}+\frac{1}{8} \omega^{a b}{ }_{\ell}\left[\gamma_{a}, \gamma_{b}\right]$, i.e., with a plus sign, not a minus sign.

On page 533 in exercise 13.19, the points should be

$$
\begin{gathered}
p=\left(\int_{0}^{t} c \sqrt{1+\frac{L^{2} \dot{a}^{2}}{c^{2}}} d t^{\prime}, a L \sin \chi \sin \theta \cos \phi, a L \sin \chi \sin \theta \sin \phi,\right. \\
a L \sin \chi \cos \theta, a L \cos \chi)
\end{gathered}
$$

or more simply

$$
p=\left(\int_{0}^{t} c \sqrt{1+\frac{L^{2} \dot{a}^{2}}{c^{2}}} d t^{\prime}, \operatorname{ar} \sin \theta \cos \phi, \operatorname{ar} \sin \theta \sin \phi, \operatorname{ar} \cos \theta, a \sqrt{L^{2}-r^{2}}\right)
$$

Also on page 533, exercise 13.20 should be omitted, and in exercise 13.24, the points should be

$$
\begin{aligned}
& p=\left(\int_{0}^{t} c \sqrt{1-L^{2} \dot{a}^{2} / c^{2}} d t^{\prime}, a L \sinh \chi \sin \theta \cos \phi,\right. \\
& \\
& \qquad a L \sinh \chi \sin \theta \sin \phi, a L \sinh \chi \cos \theta, a L \cosh \chi)
\end{aligned}
$$

or more simply

$$
p=\left(\int_{0}^{t} c \sqrt{1-\frac{L^{2} \dot{a}^{2}}{c^{2}}} d t^{\prime}, a r \sin \theta \cos \phi, \operatorname{ar} \sin \theta \sin \phi, a r \cos \theta, a \sqrt{L^{2}+r^{2}}\right)
$$

Chapter 17

On page 646, in the fourth line, "pseudomatrix" should be "pseudoinverse."

Chapter 18

On page 651, equation 18.12 should read

$$
\left\|x^{\prime}(t)-x(t)\right\|=e^{\lambda t}\left\|x^{\prime}(0)-x(0)\right\| .
$$

Chapter 19

On page 662 , in equation 19.7, the functional $G[f]$ should be $G_{n}[f]$.

Chapter 20

In Section 20.5 on page 679 , the second term in equation 20.61 should be

$$
\int_{-\infty}^{\infty}\left\langle q_{1}\right| e^{-\epsilon p^{2} /(2 m)}\left|p^{\prime}\right\rangle\left\langle p^{\prime}\right| e^{-\epsilon V(q)}\left|q_{a}\right\rangle d p^{\prime}
$$

In the same Section 20.5 on page 682, the clauses "and the density operator (20.5), for a free particle shows that free paths are damped and limited to distances of order $\hbar / \sqrt{m k T}$ " should be replaced by "and the particles are essentially free."

On page 690 in equation $20.128, P\left(\phi_{v}\right)$ should be $P\left(\phi_{j v}\right)$.

