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Symmetry breaking by fermions
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When fermions are coupled sufficiently strongly to spinless fields, the zero-point energies of the fermions can move the mini-
mum of the effective potential away from zero thereby breaking symmetries, including supersymmetry, and generating mass.

The Higgs mechanism is usually viewed as an arti-
ficial feature of the standard model because the re-
normalized squared mass x> of the Higgs boson is
contrived to be negative (or zero in the Coleman-—
Weinberg limit). In a theory containing only bosons
and light fermions, this criticism is surely valid; but
in the standard model with a heavy top quark, the
Higgs mechanism may be much less artificial. For in
theories with sufficiently strong Yukawa couplings,
the zero-point energies of the fermions can move the
minimum of the effective potential away from zero
so as to break symmetries and generate masses. In
what follows, I shall illustrate this phenomenon by
means of two examples, the Higgs mechanism and the
massless Wess—Zumino model. I shall argue that the
top quark may make the renormalized squared mass
1 of the Higgs boson negative and that fermion zero-
point energies can break supersymmetry and chiral
symmetry.

Before discussing either example, let me remind the
reader of a particularly simple effective potential due
to Weinberg [ 1]. Let us consider a theory which may
contain spinless fields ¢, fermions y;, and gauge bo-
sons B# and in which the tree-level potential is V' (¢).
If the spinless fields assume classical or mean values
0, then the particles of the theory may acquire
masses m,( @ ). To lowest order these masses are de-
termined: for the scalar fields, by the eigenvalues of
the matrix of second derivatives of the tree-level po-
tential V(¢ ); for the fermions, by the matrix of
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Yukawa couplings (if we exclude fixed mass terms);
and for the gauge fields, by the eigenvalues of the mass
matrix arising from the covariant derivatives of the
scalar fields. With these definitions, the one-loop ef-
fective potential is the sum of the tree-level potential
and the zero-point energies of the various particles,

Verr(9a) =V(da)

1z Z (—1)21’1:"%.]-

VE+mi(9a), (1)

d*k
(27)*
in which j is the spin and #, the number of degrees of
freedom of particle i, e.g., four for a Dirac fermion,
three for a massive vector boson, and two for a mass-
less one.

Let us now use this effective potential to examine
symmetry breaking in the case of the Higgs mecha-
nism. Suppose first that there are no fermions in the
theory. Then (—1)? is positive, and so the one-loop
contributions to the effective potential Vg(¢) are
all positive. Thus if the tree-level squared masses
m?(¢,) of the scalar fields are also positive, then the
effective potential V (¢, ) is an increasing function
of the classical or mean values ¢, ., of the scalar fields.
Hence the only way to break the symmetry is to do so
by hand: to stipulate that some of the squared masses
m?(¢) of the scalar fields (i.e., the coefficients of
the quadratic powers of the scalar fields ¢, in the
potential V(¢.)) are negative. In fact since the
changes in the squared masses 8m? due to the one-
loop corrections are positive and quadratically diver-
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gent, the squared masses in the potential must be
negative and similarly divergent.

Let us now consider the same theory with fer-
mions. In this case the zero-point energies of the fields
contribute to the effective potential V(0 ) a qua-
dratic polynomial in the scalar fields of the form
A2 3. (=1)¥n,m?(d.), where A is an ultraviolet cut-
off. (There are also quartic terms of the Coleman—
Weinberg form ¢ [a+blog(A%/$2%) ], but these are
numerically irrelevant unless the preceding terms
vanish.) Now for j=1, the sign (—1)% is negative.
Thus if the fermions have sufficiently strong Yukawa
couplings, then some of the eigenvalues of the matrix
of partial derivatives

az 2j 2

a¢j,cl a¢k,cl Z ( 1) nlml(¢cl) (2)
will be negative at ¢, =0, and the symmetry typically
will break regardless of the tree-level potential V'(g,,).
In this case the only way to preserve the symmetry is
to stipulate that some of the squared masses m?(¢,)
of the spinless bosons are not only positive but of the
order of A2 or larger. In other words, if there are fer-
mions in the theory with sufficiently strong Yukawa
couplings, then the only way to preserve the symme-
try is to do so by hand.

Let me illustrate this argument by the example of
the standard model of the electroweak interactions.
For simplicity I will keep track only of the particles
that are sufficiently massive to contribute impor-
tantly to the effective potential — the top quark ¢, the
W and Z gauge bosons, and the Higgs boson. If ¢, o
is the mean value of the Higgs field at the minimum
of the effective potential, then for these heavy parti-
cles the masses that determine the zero-point ener-
gies are simply m7 (dq) = (m7/ 9l 00c.0)9li0a for the
t, Mmy(Pa) = (M) Bl 00a0)9lida for the W, and
m%(9a) = (m%/ 9l 00a.0)pliga for the Z. If the tree-
level Higgs potential is V(¢q) = #>¢liga +A(0Li0a)>,
then the squared mass of the Higgs boson is
m3(dg) =690 + 1. Suppose now that x>>0. In
this case if the top quark is so heavy that

) 2 1
mi>jmiy+imz+smi, (3)

then the top quark breaks the symmetry, despite the
fact that x>> 0. The threshold for the mass of the top
is about 78 GeV/c? if the mass of the Higgs is 100
GeV/c? (93 GeV/c?if my; =200 GeV/c?). Since the
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mass of the top exceeds 89 GeV/c? [2], it may well
be the Yukawa coupling of the top quark that breaks
SU((2)®U(1) down to U(1). The Higgs mecha-
nism may be less artificial than it seems to be.

The weak point in the preceding argument is that
it relies on there being a large ultraviolet contribution
to the effective potential from the Higgs sector of the
standard model. Since the Higgs sector appears to de-
fine a trivial theory [3] (i.e., one in which the renor-
malized couplings must be sent to zero as the cutoff
is removed ), such an argument can be only qualita-
tively suggestive at best. There is, however, some evi-
dence from lattice simulations [4] for the breaking
of symmetry by Yukawa interactions.

Whether Yukawa interactions really do break the
symmetry of the electroweak interactions, depends
upon how the triviality of the theory is repaired. The
standard model is actually doubly troubled: both the
U(1) sector [5] and the Higgs sector [3] seem to be
trivial. One can cure the triviality of the U (1) sector
by embedding the U (1) symmetry in a grandly uni-
fied theory [6] with a semi-simple gauge group. Now
a positive beta function can cause triviality [7]. But
in a supersymmetric Yang-Mills theory, both the Yu-
kawa coupling constant and the quartic coupling con-
stant of the spinless fields are simply related to the
gauge coupling constant, and this gauge-boson cou-
pling constant is asymptotically free if there are not
too many kinds of fermions [8]. Thus by making the
standard model supersymmetric, one can presum-
ably fix the triviality of the Higgs sector. Logical con-
sistency may require the extension of standard model
toa SUSY-GUT.

Because the example of the Higgs mechanism is
tained with quadratic ultraviolet divergences, let us
consider a non-trivial theory with Yukawa interac-
tions, the massless Wess—Zumino model [9]. As we
shall see, the zero-point energies of the fermions can
break both the chiral symmetry and the supersym-
metry of this model and can generate masses for all
the particles of the theory.

The Lagrange density of the massless Wess—Zumino
model is

L=140,40%A+40,B 3*B+ Lyiy* 3,y
—gy(A+iysB)y—V(4, B), (4)

where V(A4, B) is the potential



Volume 269, number 1,2
V(4, B)=4g*(4>+B?)>. (5)

Apart from the supersymmetry, the theory has a global
chiral symmetry under the transformations ' =
el /2y A'=cosaA+sina B, and B' = —sina A+
cos & B. This potential has a unique minimum: (A4,
B) =(0, 0) which preserves supersymmetry and the
chiral symmetry. At this minimum, the scalar field 4,
the pseudoscalar field B, and the Majorana fermion
y are all massless.

For this model the Weinberg effective potential [1]
is

Ver(4, B)=V(4,B)+ Y, (—1)¥(2j+1)

3
x%j%./k2+mf(A,B), (6)

in which the sum is over the two bosons and the fer-
mion. The tree-level squared masses are for the two
bosons

m{ s (A, B)=3[V(A, B) s+ V(A4, B)gp
{[V(A4, B).au—V(A, B)ps]*+V(4, B)ip} ']
=2g2[2(A%+B>) £ (4*~A>B>*+B*)'], (7)

in which subscripts denote differentiation, and for the
fermion

m3,5(A4, B)=4g*(A*+B?) . (8)

Due to the equality of the number of bosonic and
fermionic degrees of freedom, the quartic diver-
gences in the effective potential cancel for all values
of A and B. Since the masses mj . (4,B) and
m3 ,,(A, B) satisfy the Ferrara-Girardello-Palumbo
mass formula [10]

2 (=1)¥(2j+1)m}(4, B)=0, (9)

the quadratic divergences in the effective potential
also cancel for all values of 4 and B, leaving only a
logarithmic divergence. If we cut off the momentum
integrals at |k| =4, then the effective potential as-
sumes the form
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Vos(A, B)=V (A, B)
(2j+1)m*(A4, B)

=N 12872
[A+\/A2+mf(A,B)]2
><<l—210g m2(4, B) ) (10)

plus terms of the order of m$(A4, B) /A*.

After letting the cutoff 4=1 TeV and the coupling
constant g=2, I found numerically that the effective
potential V (A4, B) has four minima: (4, B) = ( *a,,
0) and (4, B)=(0, ta,), where a, ~1.042 GeV. At
these minima V (A4, B)~ —0.119 GeV*. The mass
of the fermion to lowest order is m,; ,,~ 4.2 GeV, and
the masses of the bosons as given by the eigenvalues
of the matrix of second partial derivatives of the po-
tential V (4, B) are my . ~5.1 GeV and m, _~2.9
GeV. Thus in the massless Wess—Zumino model, the
fermion zero-point energies give masses to the parti-
cles and break both the supersymmetry and the chiral
symmetry. For the massive Wess—Zumino model, the
story is much the same if the mass is not too great,
except that the chiral symmetry is not present to be-
gin with.

One may also dimensionally regularize the diver-
gent integrals in the effective potential (6) by chang-
ing the three-dimensional integration over d*k to an
integration over d’k and introducing a mass scale
uand a dimensional coupling constant g(d) = u -9/
2g. With d=2.85, u=1.64 GeV/c?, and g=2, I found
the same masses for the spinless particles and for the
fermion as with a momentum cutoff 4 of 1 TeV.

How does the present discussion differ from the
conventional ones? In renormalized perturbation
theory, one divides the effective potential into a pre-
scribed finite part and some infinite counterterms. As
one computes the radiative corrections, one adjusts
the infinite counterterms so that they cancel the di-
vergences of the radiative corrections and preserve
the finite part in accordance with the renormaliza-
tion conditions. Thus one retains the net rather than
the gross radiative corrections. By keeping the cutoff
finite, I have separated the gross radiative correc-
tions, which are the whole contributions of the high-
energy physics, from the canceling counterterms. This
retention of the gross radiative corrections is the main
difference between the present discussion and the
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usual treatments.

The net and gross contributions can be qualita-
tively different. Thus, for example, the gross contri-
bution of a particle of spin j to the effective potential
is of the form

(= D¥{@’A*+ 0426+ 29 [1 —d* log(4%/9%) ]},
(11)

in which a?, b, ¢2, and d? are all positive. If one sends
the cutoff to infinity, interpreting the tree-level po-
tential as a finite part plus counterterms, then after
canceling the divergent parts of the radiative correc-
tion and satisfying the renormalization conditions,
one is left with the net contribution

(=1)¥c*d*¢* log(¢*/M?) | (12)

where M is a mass scale. For ¢> <M?< A2, the gross
contribution of the high-energy physics to the effec-
tive potential tends to force the field ¢ toward zero if
2j is even and away from zero if 2j is odd; the net
contribution has the opposite effects.

This difference between gross and net radiative
corrections bears on the relationship between the
present discussion and the classic paper on the effec-
tive potential by Coleman and Weinberg [11]. They
computed the effective potential V' (¢) for a scalar
field ¢ coupled to scalar fields, gauge fields, and fer-
mions. They showed that in one-loop order these
fields contribute to the effective potential V(¢) terms
of the form (—)¥e*¢*log ¢>/M? where j is the spin
of the field, e is the coupling constant (except for self-
coupled scalar fields for which ezﬁ), and M is a
mass scale. They concluded that for theories in which
the renormalized effective potential has zero curva-
ture at the origin, ' (0) =0, the gauge fields can cause
the Higgs field ¢ to assume a non-zero mean value in
the vacuum, but that fermions tend to suppress such
symmetry breaking. Yet I found that fermions can
stimulate symmetry breaking by making the renor-
malized coefficient ¢ negative, V" (0) <0. The res-
olution of this paradox is that Coleman and Wein-
berg chose the counterterms of the lagrangian so as to
keep the renormalized coefficient of ¢ equal to zero,
V' (0)=0; while I allowed ¥ (0) to be determined
by the bare parameters of the lagrangian and by the
dynamics. There is no contradiction because we were
in effect talking about theories with different bare pa-
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rameters. They were talking about the net radiative
corrections, while I have been emphasizing the gross
ones.

Conclusions: If particles acquire masses dynami-
cally, then the zero-point energies of these particles
depend on their masses and therefore influence the
choice of the vacuum state. In models in which fer-
mions are sufficiently strongly coupled to spinless
bosons, the zero-point energies of the fermions can
force some of the bosons to assume non-zero mean
values in the vacuum, thercby generating fermion
masses and making the vacuum asymmetric. Equiv-
alently, in theories with substantial Yukawa cou-
plings, fermion loops can make the effective, renor-
malized coefficient of the square of a scalar field
negative u”> <0, even if the corresponding bare or tree-
level coefficient is positive. If the top quark is heavy
enough, its loops can drive symmetry breaking in the
standard model. Thus the Higgs mechanism may be
less artificial than it seems. Fermion zero-point ener-
gies can also break supersymmetry and chiral sym-
metry in the massless Wess—Zumino model.
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