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STATIC FORCES IN NONCOMPACT SU(2)
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Wilson loops have been measured at strong coupling, 3 = 0.5, on a 12% lattice in noncompact simulations of pure

SU(2) without gauge fixing. In the loops that have been well measured, there is no sign of quark confinement.

In 1980 Creutz [1] displayed quark confine-
ment at moderate coupling in lattice simulations
[2] of both abelian and nonabelian gauge theo-
ries. Whether nonabelian confinement is as much
an artifact of Wilson’s action as is abelian con-
finement remains unclear.

Wilson’s basic variables are elcinents of a com-
pact group and enter the action only through
the traces of their products. His action has extra
minima [3]. Mack and Pietarinen [4] and Grady
[5] have shown that these false vacua affect the
string tension. In their simulations of SU(2), they
placed gauge-invariant infinite potential barriers
between the true vacuum and the false vacua.
Mack and Pietarinen saw a sharp drop in the
string tension; Grady found that it vanished.

To avoid using an action that has confinement
built in, somme physicists have introduced lattice
actions that are noncompact discretizations of
the continuum action with fields as the basic
variables [3, 6-11]. For U(1) these noncompact
formulations are accurate for general coupling
strengths [8]; for SU(2) they agree well with per-
turbation theory at very weak coupling [9].

This report relates the results of measuring
Wilson loops at strong coupling, 8 = 4/¢g* = 0.5,
on a 12? lattice in a noncompact simulation
of SU(2) gauge theory without gauge fixing or
fermions. Creutz ratios of large Wilson loops pro-

vide a lattice estimate of the gg¢-force for heavy
quarks. There is no sign of quark confinement
in the loops that have been measured precisely.
The force at six lattice spacings is stronger than
at five, but the statistics are not sufficient to eval-
uatc this signal.

Patrascioiu, Seiler, Stamatescu, Wolff, and
Zwanziger [6] performed the first noncompact
simulations of SU(2) by using discretizations of
the classical action. They fixed the gauge and
saw a force rather like Coulomb’s.

In the present simulations, the action is free
of spurious zero modes, and it is not necessary
to fix the gauge. The fields are constant on the
links of length a, the lattice spacing, but are in-
terpolated linearly throughout the plaquettes. In
the plaquette with vertices n, n+e€,, n+e¢,, and
n + ey + ey, the field is

@l — Iy a
Aj(z) = (; —n,)AL(n+e,)

iy +1— ?ai)A;;(n), (1)
and the field strength is
Fi,(x) = 9,AL(x) — 0, AL (x)

+ g5 AL(2)AL(2). (2)

The action S is the sum over aii piaquettes of
the integral over each plaquette of the squared
field strength,
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2
s=Y% / dz,dz, FS,(2)°. (3)
Puw
The mean-value in the vacuum of a euclidean-
time-ordered operator @(A) is approximated by
a normalized multiple integral over the Aj(n)’s

[e=SAQ(A) ], . dA%(N)

(TQUAo = * o T
fe-S(A) nu,a,n dAﬁ(n)

which one may compute numerically [1]. I used

Macsyma to write the Fortran code [10].
The quantity normally used to study confine-

(4)

ment in quarkless gauge theories is the Wilson
loop, W (#,1), which is the mean-value in the vac-
uum of the path-and-time-ordered exponential

W(nt) = = (PTe 0§45 Tnn), (5)

divided by the dimension d of the matrices T,
that represent the generators of the gauge group.
Although Wilson loops vanish {12] in the exact
theory, Creutz ratios \(r,1) of Wilson loops de-
fined [1] as double differences of logarithms of
Wilson loops

(rt) = —logW(r,t) —logW(r —a,t —a)
+ logW(r —a,t) + log W(r,t —a) (6)

are finite. For large ¢, \(r.t) approximates (a*
times) the force between a quark and an anti-
quark separated by the distance ».

For a compact Lie group with N generators T,
normalized as Tx(t,s) = ké, s, the lowest-order
perturbative formula for the Creutz ratio is

\00) = g 1) = S =t —a)

+f(,.'t_a)+_f(1'—ﬂ-,-t)] (7

f—

where the function f(r,1) is

r r 1 i
f(r,t) = - arctan — + — arctan -
t t r r

) (&)

~|
(] e

o?
~ log (‘? +
2

and g is the inverse coupling 8 = d/(kg?).

To measure Wilson loops and their Creutz ra-
tios x(r,t), I used a 12* periodic lattice, a heat
bath, and ten independent runs with cold starts.
The first run began with 25,000 thermalizing
sweeps at § = 2 followed by 5000 at g = 0.5;
the other nine runs began at @ = 0.5 with 20,000
thermalizing sweeps. In all I made 29,750 mea-

‘surements, separating successive measurements

by twenty sweeps and using a version of Parisi’s
trick [13] that respects the dependencies in the
corners of the loops. The values of the Creutz
ratios so obtained are listed in the table along
with the theoretical values given by the formu-
las (7-8). I estimated the errors by the jackknife
mcthod [14], assuming that all measurements
were independent. Binning in small groups made
little difference.

Noncompact Creutz ratios at 3 = 0.5

Lx é Monte Carlo Order 1/
2x2 0.23111(5) 0.39648
3x3 0.03567(15) 0.13092
4x4 | 0.0049441) | 0.06529
5x5H 0.00165(117) 0.03912
6x6 0.00298(322) 0.02608

If the static force between heavy quarks is in-
dependent of distance, then the Creutz ratios
x(r,t) for large t should be independent of » and
t. In the loops that are well measured “here is
no sign of confinement. The measured x(7,t)’s
are smaller than their tree-level perturbative val-
ues (7-8). The ratio x(6e,6a) is bigger than
x(5a, 5a). But the error in x(6a,6a) is huge, and
the large value of y(6a,6a) may be a transient.

Why don’t noncompact simulatious display
quark confinement? Here are some answers:

Noncompact methods lack an exact lLutice

gauge invariance. They have approxiate forms
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of all continuum symmetries, including gauge in-
variance, which they respect more at weak cou-
pling than at strong. So noncompact methods
may not be sufficiently accurate at strong cou-
pling and may accommodate too small a volume
at weak coupling. The noncompact lattice spac-
ing anc(B) is probably smaller than the com-
pact one ac(B). Thus confinement might appear
in noncompact simulations done on much larger
lattices or at stronger coupling. Both possibilities
would be expensive to test.

Perhaps SU(3), but not SU(2), confines.

Possibly as Gribov has suggested [15], pure
SU(3) does not confine, confinement being a fea-
ture only of QCD with light quarks.

Perhaps the textbook quantization of QCD,
which this noncompact method emulates, does
not correctly implement Gauss’s law. Polonyi
has argued [16] that Gauss’s law should be en-
forced by an integration over the group manifold
weighted by the Haar measure, rather than by
the usual integration over copies of the real line.
In a preliminary test of these ideas, I measured
the Polyakov line of length 12a at 3 = 0.5 to be
0.00853(67) with the Haar measure which is to
be compared with 0.01131(3) without it.

Confinement is a robust and striking phe-
nomenon. Maybe the true continuum theory is
one like Wilson’s that can directly account for
it. The hybrid measure

e” [pcre.nyTr-wpe” $o Mo W) gu( A)(9)

reduces to Wilson’s prescription if the weight
functional f(C, L) of the path integration over
closed curves C is a delta functional with sup-
port on the plaquettes and if dp(A) incorpo-
rates the Haar measure. A weight functional like
f(C, L) ~ exp[~(IC|I/L)?*] where [|C]| is the
length of the curve might give confinement for
distances much longer than L and perturbative

QCD for much shorter distances.
I have benefited from talks with J. Polonyi and
support by the Department of Energy.
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