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We suggest approximating path integrals by tilting spacetime with simplexes and by interpolating the fields throughout
each simplex from their values on the vertices. This simplicial interpolative method uses unaltered the action of the con-
tinuum theory. We present several tests of the method. Both in one dimension, for the harmonic oscillator, and in two di-
mensions, for the free massive scalar field, it was about twice as accurate as ordinary lattice theory. We also computed
Wilson loops in two dimensions for free quantum electrodynamics. By using huge lattices, we achieved an accuracy of bet-
ter than 0.5% and observed a remarkable restoration of translational and rotational invariance.

Because lattice gauge theory has been so successful,
it is worthwhile trying to improve it. We suggest defin-
ing the fields throughout spacetime so as to be able to
use the action of the continuum theory. We also sug-
gest replacing cubes by simplexes and linearly inter-
polating the fields throughout each simplex from their
values at the vertices. We present several tests of this
simplicial interpolative method for field theories in one
and two dimensions. These tests indicate that it is ty-
pically twice as accurate as ordinary lattice methods.

The simplicial interpolative method is similar in
spirit to one we proposed in earlier works [1] 2l
In that method one approximates path integrals by ex-
panding the fields in terms of a complete set of func-
tions, by truncating the expansion, and by using
Monte Carlo techniques to evaluate the resulting finite-
dimensional integrals. The simplicial interpolative
method is also similar to the finite-element method of
Bender, Guralnik and Sharp [3], and differs from it by
its use of simplexes instead of cubes.

A simplex o in d-dimensional space has d + 1 ver-
tices v; and consists of points x that are linear combina-
tions of its vertices with nonnegative coefficients p;
which sum to one,

* Supported in part by the U.S. Department of Energy under
contract DE-AC04-81ER40042.
1 Institute for Modern Optics.
#1 In this reference “‘standard deviation” means that of a
single measurement, not of the average.
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One may fill euclidean space of any dimension d with
identical simplexes 0%. The best way may be to use
the dual root lattice 4, which is probably the opti-
mal covering lattice [4,5], and to divide its unit cell
into simplexes.

Throughout each simplex, we define a field ¢(x) in
terms of its values at the vertices ¢; = ¢(v;) as the
linear interpolation

$(x) = d(x, ©) = d(pvy) = pip ) = pici » (©))

where sums over i from 0 to d are understood. In this
way we interpolate each field throughout spacetime

in terms of the set of parameters ¢ = {¢;*} . By sub-
stituting such an interpolation for each field into the
action functional S[¢] of the continuum theory and
by integrating over spacetime, one may express the ac-
tion as a function S(c) of the parameters c. Because
the interpolation is linear in the parameters, in the
limit of an infinitely fine lattice of simplexes the
jacobian det [3¢(x, ) /dc;* cancels in ratios of path
integrals. Thus one converts a path integral into an in-
finitely multiple integral over the parameters c. Fora
finite volume of spacetime and finite simplexes, the
integrals over the parameters are of finite dimension.
For example, the Wilson-loop functional for an abelian
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gauge field 4,,(x) takes the form:

0 ITexp(iefA“(x)dx“) |0)
~ [:HI;AI/I fdcn exp (—S(c) + iefA”(x, c) dx“):'

N 5
X(nI;[l f de,, exp[—S(c)]) l- (3)

One may use Metropolos’ method of importance sam-
pling [6] to compute such ratios of multi-dimensional
integrals. By allotting sufficient computer time to the
Monte Carlo implementation of Metropolis’ method,
one typically can approximate these integrals to arbi-
trary accuracy.

In this paper we present several applications of the
simplicial interpolative method to theories in one and
two dimensions. In each case, we tested the method
by comparing its accuracy with that of the standard
method for an equivalent lattice. We used free theories
in order to be able to do the multiple integrals exact-
ly by matrix methods rather than approximately by
Monte Carlo techniques. We thus isolated the intrinsic
errors of both methods.

In one dimension we computed the expected value
of the square of the position operator, (x 2), in the
ground state of the harmonic oscillator. The simplicial
interpolative method was more than twice as accurate
as the standard one. For example, for a lattice of 11
points, it gave an accuracy of 4% as opposed to 11%
for the standard method.

We applied our method to the theory of a free mas-
sive scalar field in two dimensions, for which we cal-
culated the analogue of the Wilson loop (3). The sim-
plicial interpolative method was typically about twice
as accurate as the standard one. For example, for a 20
by 20 loop (in units of inverse mass) in a 100 by 100
lattice, our method erred by 5%; the standard one by
12%.

We also calculated Wilson loops in free two-dimen-
sional quantum electrodynamics. Because the action
of this theory has only derivatives of the fields, the
two methods give identical results for the simplicial lat-
tice obtained by slicing the usual lattice of squares
along parallel diagonals. By using huge lattices, we
found evidence suggesting that both methods converge
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to the exact results of the continuum theory. For 200
by 200 loops (in units of inverse charge) in a 100 000
by 100000 lattice, the errors were less than 0.5%. We
observed an impressive restoration of translational and
rotational symmetry. The value of a Wilson loop typi-
cally changed by only 2 parts in 101! when the loop
was translated in time from the center by 40 000 units
and by less than 16 parts in 105 when it was rotated
by 45°

We derived our results for the harmonic oscillator
by parameterizing the coordinate x (7) in each interval
[, ti41] of duration a as x(£) = ¢; + (t — ) (civq —
¢;)/a, which is the rule (2) for d = 1. By substituting
this parameterization into the lagrangian, L = (¥ 24
x2)/2, and integrating over time, one may express the
euclidean action as a quadratic form, S = ¢iM;ic;. The
expected value of x2(0) is then half the central ele-
ment of the inverse of M. A similar rule applies to the
standard lattice representation of x (). We used Matlab
[7] to compute the required inverses for both methods
with periodic boundary conditions on x (7). The exact
result is (x2(0)) = 0.5. For a lattice of duration 10 and
for intervals of duration @ = 1.0, 0.5, and 0.25, the re-
sults for the simplicial interpolative method were
0.4804, 0.4949, and 0.4987; while those for the stan-
dard method were: 0.4473,0.4851, and 0.4962. The
simplicial interpolative results are from 2.7 to 3 times
more accurate.

We compared the two methods in two dimensions
by applying them to the theory of a free scalar field of
mass m described by the Lagrange density, L =
[(3,4)? + m2] /2. The quantity we evaluated is the
analogue of the Wilson loop (3) that results from re-
placing 4 A by o1, where " is a unit vector tangent
to the loop. For a square loop of side L, this quantity
is

(OITexp(iefd)(x)tﬂ dx“) 10)

1
=exp (— (2e2L2/1r) f du(1 —u)f(u, mL)) ¥ #:(4)
0

where the function f(u, mL) is defined in terms of
Macdonald’s function as f(u, v) = K olvu) — Ko(v(u2
+1)1/2),

We used the simplicial lattice obtained by slicing
the usual lattice of squares along parallel diagonals. We
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interpolated the field ¢ in a triangle lying below a dia-
gonal as ¢ (x, ) = Cym + (Cpr1m — Cnm) E —an)la +
(Cpm+1 — Cnm) (x —am)/a, with a similar rule for up-
per triangles. By using this parameterization and inte-
grating over space and time, we expressed the action
and the line integral of ¢ as a quadratic polynomial in
the ¢’s. We then completed the squares by shifting the
matrix ¢ of integration variables. The shift matrix was
defined by a linear system, which we solved perturba-
tively by identifying two small parameters of modulus
less than 0.25. Thus we obtained the scalar loop (4) in
terms of the shift matrix. We similarly evaluated the
scalar loop for the standard square lattice. For a square
loop of side 10, in units of inverse mass, the exact
value of the natural logarithm of the scalar loop func-
tional (4) divided by —e2L 2i5 0.093631. For a 50 by
50 lattice and for the lattice spacings @ = 1.0, 0.5, and
0.25, the results for the simplicial interpolative method
were 0.087242, 0.091651, and 0.092821; while those
for the standard method were 0.081301, 0.089844,
and 0.092344. For a square loop of side 20 the exact
value is 0.048409. For a 100 by 100 lattice and for the
lattice spacings @ = 1.0, 0.5, and 0.25, the results for
the simplicial interpolative method were 0.045833,
0.047609, and 0.047939; while those for the standard
method were 0.042690, 0.046667, and 0.047689. The
simplicial interpolative results are from 1.5 to 2.2 times
more accurate.

We also applied the method to the calculation of
Wilson loops in free two-dimensional quantum electro-
dynamics. To reduce the number of fields and redun -
dant field configurations, we worked in the temporal
gauge, A(x, ) = 0. The temporal-gauge action S[A4]

S[A] =15f/12dxdz ()

in which A is the time derivative of the remaining field
variable, 4 = A4 ,. The exact value of the Wilson-loop
functional (3) for a loop of area Z is exp(—e2Z/2).

We used the same triangular lattice and the same
parameterization for the field A (x, f) as for the scalar
field. In a triangle lying below a diagonal, the time de-
rivative A, which is the only variable in the action (5),
takes the form A (X, £) = (¢4 1m — Cnm)/a. In terms
of the matrix ¢ and its transpose ¢!, the action and the
Wilson-loop integral reduce to the sum of two simple
traces,
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+S(c)+ iefAn(x, ¢) dx*

= —Tr (c'Mc) + iea Tr(c' ) (6)

in which the matrix M is a tridiagonal with +1’s along
its main diagonal and —0.5’s along its upper and lower
diagonals. The matrix j is nonzero only along the
spatial segments of the loop. For an upright rectangular
loop, j has +1°s along the top and bottom of the loop
and +0.5’s at the corners, where the sign is that of dx.
We substituted the preceding expression (6) into the
formula (3) for the Wilson loop, completed the squares
and found the Wilson loop to be exp[—eza2

X Tr(j M~ 1/)/4]. To compute the trace, we used the
Linpack [8] programs dgbfa and dgbsl, which are de-
signed for large banded matrices. We used dgbfa to
factor the tridiagonal double-precision matrix M, and
then used dgbsl to solve the system Mb = jj* for b. For
square lattices of length 1000, 2000, 5000, 10000,
and 100000 (in units of inverse charge), the best
square centered loops were of length 22, 32, 50,70,
and 220. For them the errors were 4.42%, 3.14%,
1.99%, 1.41%, and 0.45%, respectively. The length of
the best loop is approximately 0.7 times the square
root of the length of the lattice; its percent error is ap-
proximately 141 divided by the same square root.
There appear to be two competing effects: the loop
should be big compared to the lattice spacing  and
small compared to the lattice.

We noticed a striking degree of translational and
rotational invariance. For a 200 by 200 loop, the ex-
act value of the logarithm of the Wilson loop divided
by —e? is 20000. For the 100000 by 100 000 lattice
our result for the centered loop was 19910.100398764;
our results for the same loop translated in time by
10000 and by 40 000 were 19910.100398737 and
19910.100398323. The larger change amounts to 2
parts in 1011, Because the action (5) does not couple
different points in space, our results possess a perfect
but trivial invariance under spatial translations. We
checked invariance under rotations by computing
Wilson loops rotated by 45°, approximating such loops
by loops that follow the links of the lattice. For a
10000 by 10000 lattice and square loops of diagonal
92, the difference between the upright and rotated
loops was less than 16 parts in 10°, most of which was
probably due to our adherence to the links.
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It may be worth noting that in all these examplex the
computed vacuum expected value of an operator was
smaller than the exact value when the operator was
positive and larger when it was unitary.

We applied our method to free fermions in two
dimensions, using both the right-triangular lattice and
the lattice A% of equilateral triangles. We also applied
the finite-element method [3] to this theory. We
found various forms of fermion doubling in all cases.
However, the operator finite-element method [9] does
appear to be free of fermion doubling.

We are particularly grateful to Cleve Moler and
Neil Sloane for information and advice. We should also
like to thank Richard Blankenbecler, Colston Chandler,
Alain Comtet, Roy Glauber, Peter Lax, Jacques
Layssac, Marlan Scully, David Sharp, Stanly Steinberg,
and Marvin Weinstein for helpful conversations. This
work was supported by the Department of Energy under
contract DE-AC04-81 ER40042.
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