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The action density and Wilson loops for SU(2) in three dimensions have been measured using both a noncompact ver-
sion of lattice gauge theory and Wilson’s version. As a standaxd of comparison, the Creutz ratio x of a quartet of Wilson
loops has been calculated in the exact theory to order 1 /6 The noncompact method gave x’s that are between 2 and 23%
below the one-loop calculation for the smaller loops at § = 30 and 60 on a 24 lattice. Wilson’s method gave x’s that are
above the one-loop calculation by comparable amounts. For g < 10, the noncompact x’s are closer than the Wilson x’s to
the one-loop calculation. Also some noncompact simulations were done in the temporal gauge; the results agree subtantial-
ly with those done without §auge fixing, providing evidence for the gauge independence of the noncompact method. By
comparing the x’s of the 127 lattice at 8 = 30 with those of the 243 lattice at B =30 and 60, evidence was found that the
accuracy of the noncompact method improves both as the volume of the lattice grows and as the lattice spacing shrinks.

Wilson’s lattice gauge theory [1] is a practical way
to study gauge theories nonperturbatively [2,3]. But
is it valid beyond weak coupling? The basic variables
of Wilson’s method are the group elements
exp(igad ,*\*) where g is the coupling constant, a the
lattice spacmg,A @ the gauge field, and A* a genera-
tor. Wilson’s actxon and domain of integration resem-
ble those of the continuum theory when the angles
lgaA ”°‘I are much less than unity, which is true only
for weak coupling. At stronger coupling, the extra
terms in Wilson’s action and the topology and curva-
ture of his domain of integration become important.
In a theory with a running coupling constant, one
may try to reduce the resultant errors by working at
weak coupling. But in SU(3) the physical size of the
lattice spacing shrinks with g like exp[—1/(2byg?)]
where b = 11/16m2 [4]. If one reduces g, one must
compute on a larger lattice in order to encompass
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the same physical phenomenon. A reduction of g
from 0.5 to 0.25 requires an increase of a 104 lattice
to one of size (1038)4.

In earlier papers [5,6], we developed a method for
approximating euclidean path integrals at arbitrary
coupling. In this method one tiles spacetime with
simplexes and linearly interpolates the fields through-
out each simplex from their values at the vertices.
The fields are defined continuously throughout
spacetime. The method uses the action and domain
of integration of the exact continuum theory, un-
altered apart from the granularity of the simplicial
lattice. In the limit in which the lattice spacing goes
to zero and the lattice size to infinity, the method
provides a definition of the euclidean functional in-
tegral of the continuum theory.

In ref. [6] we applied this noncompact method to
U(1) in three dimensions, computing Creutz ratios for
various quartets of Wilson loops. We found that for
U(1); the noncompact method is accurate at arbi-
trary coupling, while Wilson’s method is accurate
only at weak coupling.

In the present paper, we describe our use of the
noncompact method to measure the action density
and Wilson loops for SU(2) in three dimensions.

We derived the theoretical weak- and strong-
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coupling limits of the action density and verified that
our heat-bath Monte Carlo codes gave these limits.
The action density varies with the inverse coupling

B = 4/ag? much more gradually than in Wilson’s
method. We saw no evidence of a phase transition.

In order to judge the accuracy of our method and
of Wilson’s, we derived a formula valid to order g4
for Creutz ratios of Wilson loops in the exact theory.
On the 243 lattice, the noncompact method gave
Creutz ratios x(r, t) that are between 2 and 23%
below the x’s of the one-loop calculation for the
smaller loops at = 30 and 60.

To compare the noncompact method with Wilson’s,
we used Steve Otto’s C code to do Monte Carlo com-
putations in Wilson’s formalism. For all § the Creutz
ratios of Wilson’s method are higher than those of the
one-loop calculation, and those of the noncompact
method are lower. For =30 and 60, the Wilson x’s
for most loops are somewhat closer than the noncom-
pact X’s to the one-loop x’s. As the coupling increases,
the two methods diverge from the one-loop calcula-
tion: for < 10 the noncompact x’s are closer than
the Wilson x’s to the one-loop x’s.

The action of the noncompact method is exactly
gauge invariant, although it is possible, but unwise, to
fix the gauge. However the functional-integration
space of the method, being sparse, is only approxima-
tely gauge invariant. To test the effective gauge inde-
pendence of the method, we computed some Creutz
ratios in the temporal gauge and compared them with
those computed in the usual way, i.e. without gauge
fixing. For » > ¢, the temporal-gauge x(r, t)’s agree
with those computed without gauge fixing to within
about 10% for = 6 and about 20% for = 2.

If the noncompact method is valid, then its ac-
curacy should improve both as the volume of the lat-
tice grows and as the lattice spacing shrinks. We
found evidence that this was so by comparing the x’s
of a 123 lattice at 8= 30 with those of the 243 lat-
tice at #= 30 and 60.

In the noncompact method, spacetime is limited
to a periodic cubic lattice each cube of which is tiled
with six (tetrahedral) simplexes, as shown in fig. 1.
Each spacetime point x lying in a simplex with ver-
tices v; can be uniquely expressed in the form x =
Z;p;v; in which the four nonnegative weights p; sum
to one. We use this formula linearly to interpolate the
field 4, %(x) at x from its values 4 (u, a, v;) at the ver-
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Fig. 1. A cube of the lattice divided into six tetrahedral
simplexes.

tices v;: 4, %(x) = Z;p;A(u, @, ;). Since the inter-
polated fields are defined throughout spacetime, we
use the euclidean action of the continuum theory,
S[Al=s d3x%Fuu°‘(x)2, where F, %(x) is defined in
terms of the field 4 % (x) as in the continuum theory.
Because the interpolation is linear in the field variables
A(v, B, v), the jacobian det[dA4,,*(x)/dA(v, B, v)] can-
cels in ratios of path integrals. Thus we approximate
the mean value in the vacuum of a euclidean-time-
ordered operator Q(A4) by a normalized multiple in-
tegral over the 4(u, a, v)’s:

QIT Q(4)I0)

wf HdA([.L, a, v) exP{—S[A]}Q(A) (1)
f H dA(#» a’ U) exp {_S[A]} z

where Q(A4) is obtained from Q(A) by replacing the
operator A, *(x) with the interpolated field 4 u ).
We use Monte Carlo techniques to evaluate such mul-
tiple integrals.

For the 243 lattice, the action is a quartic poly-
nomial in 124 416 variables, the A(u, a, v)’s. Each 4
occurs only quadratically in the action, due to the
antisymmetry of £, ,%(x), and is coupled to only 135
other 4’s in 24 simplexes. We used these facts to
write a heat-bath algorithm [7] that needs only the
first and second derivatives of the action with respect
to each 4. As described in ref. [8], we used the sym-
bol manipulator MACSYMA to calculate these deriv-
atives and to write them in FORTRAN.

In the weak-coupling limit, the field variables 4
are small, and the action reduces to a quadratic form.
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Apart from zero modes, the mean value (S), of the
action per cube is half the number of field variables
per cube. Since there are nine A’s per cube, we ex-
pect (S), = 4.5. A run on the 163 lattice at = 400
gave (S), = 4.474. Already for 2 2, (S), is within 10%
of its weak-coupling limit, and by 8= 9 it has gone 90%
of its way from its strong-coupling limit to its weak-
coupling limit.

At strong coupling, it is the quartic terms in the
action that dominate. If the quadratic and cubic
terms are neglected, there is no coupling between
fields at different points. The classical action is then
an integral of a sum of squares of cross-products of
the fields 4, (x):

2
Szé;_ fd3x[(A1 X Ap)?+(Ay X A3)% + (43X 41)?].

(2
In this case it is reasonable to approximate the inter-
polated fields in each cube by 4 ,’s that are indepen-
dent of x” Then the mean value of the action in a
single cube is the logarithmic derivative (S), ~
—pBd log Z/dB of the partition function

3
Z= fd3a1d3a2d3a3 exp(—ﬁ E (ap X ay)z) s (3)
u<v

where a,, = agA,, . By scaling the a, by B1/4, one finds
that the strong-coupling limit of the action per cube

is just (S), = 2.25. It is only for § < 0.002 that (),
gets to within 10% of this limit. A short run at § =
10— 8 gave (), = 2.249. This result illustrates a quartic
equipartition in which the mean value of the action
per field variable is 3. It also suggests that the non-
compact method makes sense even at very strong
coupling.

On the 103 lattice, we measured (S), in the tem-
poral gauge from §= 10 to = 0.225 and back. No
sign of hysteresis was evident, indicating the absence
of a first-order phase transition over this range of
coupling. The action density of Wilson’s method also
exhibits no phase transition; but it varies more abrupt-
ly, vanishing like § in the limit of strong coupling [9].

For the fundamental representation of SU(2), the
Wilson loop is the mean value

W(r, £)=(O|Tr P T exp (ig ) An“(x)o"‘/de“) 10)/2
(C))

in which the operators are time-ordered in the euclidean

sense, the matrices are path ordered, and the contour
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of integration is an r-by-f rectangle. Wilson loops
vanish in more than two dimensions due to the
singular electric string generated by the Wilson-loop
operator [10]. Creutz introduced the practice of
measuring ratios of products of Wilson loops in a way
that separates the physically important area term
from this singularity [2]. The Creutz ratio of a quar-
tet of Wilson loops is the logarithm of a ratio of their
products:

X(R, T) = x(r/a, t/a)

P W(r, OW(r —a, t — a)
__ln(W(r—a, t)W(r,t—a))' ©)

Using perturbative methods [11,12], we derived a
formula for Creutz ratios in SU(2); valid to order g4.
Our formula is obtained by substituting for In[W(r, #)]
in the definition of x(R, T) the expression U(r, t) +
U(t, r) where

U(r, t) = (3g2/8m)[r ash(r/t) — (2 + 12)1/2]
+ (3g4/256m2) [—2(4r2 + t2) ash?(r/1)

+4[5r(r2 + t2)1/2 — 2rt — 2r2] ash(r/r)

— 8rt ash(r/t) ash(t/r)
+8¢[(r2 + 12)1/2 — £] ash(¢/r)

+8(r +26)(r2 + 12)1/2 — 8rt + 821(r, 1], (6)
ash = arcsinh, and / is the integral

1
16, 1)= [ dx[x ash(oe/e) — (62 + 12/r)1/2—2x Inx]
0

X [ash(rx/t) + ash(r(1 — x)/1)]. (7)

We have suppressed in U(z, ¢) all terms that are inde-
pendent of 7 or of # because Creutz ratios do not de-
pend on such terms.

To extract the one-loop quark—antiquark static
potential V() from our formula for In[W(r, £)] we
took the ¢ = oo limit [10] of (3/3¢) In[W(r, )] , ob-
taining V(r) = (3g2/8m) In r to within an additive con-
stant. In this formula the term proportional to g*
vanishes.

The main result of this paper is that the noncom-
pact method gives Creutz ratios that at weak coupling
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agree quantitatively with those of the one-loop ap-
proximation to the exact theory. In this method,
since the fields are interpolated throughout space-
time, one may approximate the path-ordering in the
definition (4) of the Wilson loop to arbitrary preci-
sion. We used an ordered product of exponentials,
one for each half lattice spacing for 8= 30 and 60 and
one for each whole lattice spacing *! for << 10. To
compute Creutz ratios at = 60, we made 64 sweeps
on the 243 lattice, with measurements every sweep,
starting from fields thermalized by 230 sweeps. For
R=r/a=2—4and T = t/a = 2—4, these x(R, T)’s are
between 2% and 16% below the x’s of the one-loop
calculation, with an average error of 8%. For R and
T'< 5, the average error is 10%. The x(R, T) with

R < 6 and T < 3 (or vice versa) are between 2% and
10% below the one-loop x’s. At 8= 30, we made 154
measurements, starting from fields thermalized by
300 sweeps. For R and T = 2—4, these x(R, T)’s are
between 8% and 30% below the one-loop values, with
an average error of 17%. For R and T< 5, the average
error is 21%. The x(R, T)’s with R < 6 and 7'< 3 are
between 8% and 23% below the one-loop x’s.

Wilson’s method gave comparable results at § =
30 and 60 in the simulations we ran using Otto’s code
on the 243 lattice: its x’s are between 5 and 13%
above the one-loop values for the smaller loops.

At =10 we ran 206 sweeps of the noncompact
method on the 243 lattice with measurements every
other sweep after 190 thermalizing sweeps. For R
and 7'< 4, these x(R, T)’s average 32% below the one-
loop values. For R and T< 5, they average 37%
below. For all R and T, they are closer than the
Wilson x’s to the one-loop results.

As the coupling grows stronger, the x’s of the two
methods diverge from those of the one-loop calcula-
tion. The noncompact x’s remain below the one-loop
X’s; the Wilson x’s rise higher above the one-loop x’s.
For B< 10, the noncompact x’s are closer than the
Wilson x’s to the one-loop x’s. This behavior is il-
lustrated in figs. 2 and 3 which display x(2, 2) and

#1 After the runs of this paper, we tried much finer approxi-
mations, such as using one exponential for each 1/100th
of a lattice spacing. The x’s moved closer to the one-loop
values. At = 1, x(2,2) and x(3,3) increased by about
10% and 45%, respectively. The improvement was much
less, however, for g8 > 6.
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Fig. 2. The Creutz ratio x(2, 2) from Wilson’s method,
asterisks; from the one-loop calculation, curve; and from the
noncompact method, crosses.
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Fig. 3. The Creutz ratio x(3, 3) from Wilson’s method,
asterisks; from the one-loop calculation, curve; and from the
noncompact method, crosses.

X(3, 3) for < 10. The Wilsonian x’s are represented
by asterisks, the noncompact x’s by crosses, and the
one-loop calculation by curves. The error bars, had
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we shown them, would have been smaller than the
plotted symbols, except for the left-most point
which is uncertain by about 10% in each figure. The
Monte Carlo data were obtained on the 163 lattice in
runs of several hundred sweeps. The range of validity
of the one-loop calculation is unknown. However, the
fact that in the noncompact simulations the action is
within 10% of its weak-coupling limit for § = 2 sug-
gests that the one-loop results may have some validity
in that region. If so, then the noncompact method
may be more accurate then Wilson’s method for § <
10, as it was [6] for U(1)3. In this range of §, the
angles |gaA4 ,*| may not be sufficiently small for
Wilson’s method to be accurate. Our simulations in-
dicate that at 8 = 2.5, for example, the mean value

of these angles is about 0.7.

Of the Wilson loops that we measured on the 163
lattice for 8 between 0.05 and 10, only the 1 X 1, ...,
1X 6,2 X 2,and 2 X 3 loops exhibit an area law. It
is possible that the bigger loops had not yet thermal-
ized, since none of the runs had more than 1400
sweeps. However, our data on the action density sug-
gest that it is not until f is less than about 0.002 that
the theory enters the region of strong coupling. We
do not have data on Wilson loops for such 8 and are
unable to decide whether the theory confines [13].
The Wilson loops of Wilson’s method do display an
area law [9,14], at least for § less than about 5.

Some of the discrepancy between the noncom-
pact x’s and the Wilson x’s may be due to differences
in coupling-constant renormalization. The Wilson
x(2,2) at By ~ B+ B1/2 + 1.6 is approximately equal
to the noncompact x(2, 2) at . For x(3, 3) the shift
is By ~ B+ 1.51/2 +3.5.

The action S[A4] of the noncompact method, be-
ing that of the continuum theory, is invariant under
an arbitrary continuum gauge transformation 4 >4
In this sense the gauge invariance of the method is
exact. However, the functional-integration space of
the method, being the space of linearly interpolated
fields, is uniformly sparse in the space of all gauge

fields. For every gauge field 4, there is a unique linear-

ly interpolated field P(4), but the correspondence is
infinitely many to one. The space of all linearly inter-
polated fields P(A4) is therefore not gauge invariant,
but for reasonably smooth gauge transformations the
action S[P(4")] differs only slightly from S[P(4)].
The Wilson method, on the other hand, has an exact
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lattice gauge invariance, which converges to the gauge
invariance of the continuum theory as the coupling
and lattice spacing go to zero.

To test the effective gauge independence of the
noncompact method, we computed some Creutz
ratios in the temporal gauge and compated them with
those computed without gauge fixing. In temporal-
gauge quantization, the field A is missing and Gauss’s
law must be imposed upon the physical states as the
constraint that they be gauge invariant. The vacuum
state automatically satisfies this constraint because it
is the state of lowest energy [15]. However, in the
temporal-gauge formalism, the vacuum state is de-
fined in terms of the hamiltonian /A as the approxi-
mate projection operator exp(—aN H/2), where aNV,
is the temporal extent of the lattice. Since this pro-
jection becomes exact only as NV, = °°, finite-size ef-
fects affect temporal-gauge x(, t)’s, particularly for r
less than ¢. For example, x(2, 6) can be much less
than x(6, 2), rather than equal to it as required by
euclidean symmetry. Thus it is better not to fix the
gauge.

If the noncompact method is gauge independent,
then for r > ¢ the temporal-gauge x(7, )’s should
agree with those computed without gauge fixing. At
=6 on the 163 lattice, we got the following pairs
of X’s in the temporal gauge and without gauge fix-
ing, respectively: x(6, 2) = 0.047 and 0.043, x(5, 2) =
0.048 and 0.044, x(4. 2) = 0.048 and 0.046, x(3.2) =
0.050 and 0.051, x(6, 3) = 0.024 and 0.021, x(5, 3) =
0.024 and 0.021, and x(4, 3) = 0.025 and 0.024. The
analogous x pairs at 8= 2 are: x(6, 2) = 0.13 and 0.10,
x(5,2)=0.13 and 0.11, x(4,2)=0.13 and 0.11,
x(3,2)=0.13 and 0.13, x(6, 3) = 0.05 and 0.04,

x(5, 3) = 0.06 and 0.04, and x(4, 3) = 0.06 and 0.05.
All the pairs agree to within the statistical errors.
This agreement illustrates the approximate gauge in-
dependence of the noncompact method.

If the noncompact method is valid, its accuracy
should improve as the volume of the lattice increases.
To test this, we compared runs on the 123 lattice
with ones on the 243 lattice. At 8= 30 and for R and
T <5, the X(R, T)’s of the smaller lattice averaged
24% below the one-loop x’s while those of the bigger
lattice were only 21% below. These results suggest
that the noncompact method becomes more accurate
as the volume of the lattice increases.

The accuracy of the method should also improve
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as the lattice spacing decreases with the volume of the
lattice and the coupling constant held fixed. Since
B=4/ag?, the Wilson loop W(R, T) on the 123 lattice
with lattice spacing @ at §= 30 corresponds to the loop
W(2R, 2T) on the 243 lattice with lattice spacinga’ =
a/2 at = 60. Thus the Creutz ratio corresponding
tox(R, T) on the coarser lattice is X'(2R, 27) on the
finer lattice defined as

W(2R, 2T)W(2R — 2,2T — 2)
W(2R, 2T — 2)W(2R — 2, 27‘))'

On the coarser lattice we found x(2, 2) = 0.0140 +
0.0001, which is 13.2% below the one-loop value of
0.0160; on the finer lattice we found x'(4, 4) =
0.0145 £ 0.0002, which is 9.6% below the one-loop
value. This improvement suggests that the noncom-
pact method becomes more accurate as the lattice
spacing shrinks.

QR 2T)=— ln(

From this work we draw the following conclusions:

(1) Both the noncompact method and Wilson’s meth-
od give Creutz ratios x that are close to our one-loop
perturbative formula for very weak coupling, i.e. for
B=30. (2) For B< 10, the x’s of the noncompact
method are closer than the Wilson x’s to the one-loop
x’s. To the extent that the one-loop result may be
reliable for 8 < 10, the noncompact method may be
more accurate there than Wilson’s. (3) The x of the
noncompact method are always lower than the one-
loop x’s. This effect may be evidence for infrared
softening [11]. (4) The region of strong coupling in
the noncompact method does not set in until § is less
than about 0.002. We do not have data on x’s of the
such § and are unable to decide whether the theory
confines [13]. (5) The noncompact method seems
approximately gauge independent inasmuch as for

r >t its temporal-gauge x(7, ?)’s agree substantially
with those computed without gauge fixing. (6) The
accuracy of the method seems to improve both as
the volume of the lattice increases and as the lattice
spacing decreases.
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