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NONCOMPACT SIMULATIONS OF SU(2)* 
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Noncompact simulations of SU(2) without gauge fixing on a 104 lattice are consistent with perturbation theory 
at very weak coupling but show no evidence of quark confinement at strong coupling. 

Gribov has suggested [1] that the existence of light 
quarks is a necessary part of the mechanism of quark 
confinement in QCD. Confinement, in his view, is es- 
sentially due to light-quark pair creation and so is not a 
property of QCD without quarks or with quarks that 
are all heavier than the QCD scale A. The present 
paper describes the first noncompact simulations of 
quarkless SU(2) that have been done without gauge 
fixing in four spacetime dimensions. These simula- 
tions are consistent with perturbation theory at very 
weak coupling but show no evidence of quark con- 
finement at strong coupling. They support Gribov's 
suggestion that pure QCD does not confine and con- 
firm earlier gauge-fixed noncompact simulations [2,3], 
but disagree with the usual compact Wilsonian simu- 
lations [4,5]. However the present noncompact simu- 
lations, done on a 104 lattice, don't exclude the pos- 
sibility that noncompact simulations done on a much 
larger lattice might display confinement. For as we 
shall see, the lattice spacing ajvc(~) of the noncom- 
pact method is likely to be much smaller than the 
lattice spacing aw(~) of Wilson's method. 

It is generally believed that quark confinement is a 
property of the QCD vacuum, having little to do with 
the nature of the quarks themselves. This belief is 
partly due to the many attempts that have been made 
to derive confinement in the simpler context of quark- 
less QCD. The best evidence that pure QCD con- 
fines comes from the lattice simulations that Creutz [5] 

and others have carried out using Wilson's method [4]. 
But confinement is a nearly universal feature of Wil- 
son's compact method, holding in the strong-coupling 
limit even for abelian gauge groups in spacetimes of 
any dimension. So it is not clear whether the con- 
finement seen in compact simulations is a relic of the 
confinement built into Wilson's method or a reflection 
of a property of QCD. 

Because of this ambiguity, physicists have de- 
veloped alternative Monte Carlo methods [2.3.6-10] 
for approximating ratios of euclidean path integrals. 
These methods are called "noncompact" because their 
basic variables are fields rather than group elements 
as in Wilson's "compact" method. One difference be- 
tween the two kinds of method is that the compact 
method has an exact lattice gauge symmetry that is 
different from the gauge invariance of the continuum 
theory while the noncompact methods have an approx- 
imate version of the continuum gauge invariance. It 
is not clear which side of this tradeoff is more accu- 
rate for nonabelian theories. For U(1) the noncom- 
pact method is accurate at all coupling strengths [7], 
whereas the compact method is accurate only at weak 
coupling. 

Prior noncompact simulations of SU(2), which 
were done with gauge fixing, also showed no sign 
of quark confinement. Patrascioiu. Seller. and Sta- 
matescu [2] used for the field strength of a plaquette 
the simple discretization 
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F'(p.~) = 
a 

A~Cn + ae.) - A~(n) 
a 

b c + g f~ .A . (n )A~Cn)  

in which the vector n labels the vertices of the lattice. 
Their action was the sum 

a 4 

s = ~ TF°Cp.~) ~ 
pt~u 

over all plaquettes p.~ and colors a (but not also over 
/z and ~,}. Because this action has many zero modes, 
they fixed the gauge, choosing the temporal gauge 
for its theoretical simplicity. They saw a force law 
rather like Coulomb's law and found agreement with 
asymptotic freedom. 

Seller, Stamatescu, Wolff. and Zwanziger [3] used 
the more symmetrical field strength obtained by re- 
placing the A's in the quadratic part of F~(p.~) by 
A~(n) = ½ (A~(n + ae~) + A~Cn)) with a similar for- 
mula for A~(n). The resulting action S has fewer 
zero modes but still requires gauge fixing. They used 
a technique called stochastic gauge fixing developed 
by Zwanziger [12]. Their simulations were also con- 
sistent with asymptotic freedom but not with quark 
confinement. 

Gauge fixing is undesirable because the integra- 
tions over all gauge copies enforce Gauss's law and 
because it is not possible to transform an arbitrary 
gauge configuration into a particular gauge, such as 
the temporal gauge, while preserving periodic bound- 
ary conditions in a finite spacetime [10]. To be able to 
integrate over all gauge configurations, it is necessary 
to use an action that is quite free of zero modes. One 
way to do this is to interpolate the fields throughout 
spacetime from their values at the vertices of a lattice 
tiled with simplices [6--10]. In four dimensions, how- 
ever. the Fortran source code is over 600 K bytes and 
the program is slow. 

One may shorten the code and increase its speed 
by adopting Wilson's structure of links and plaquettes 
and linearly interpolating the fields throughout the pla- 
quettes. The fields are then constant  on the links of 
length a, the lattice spacing, but are interpolated lin- 
early throughout the six transverse plaquettes. In the 
plaquette bounded by the vertices n. n + ae., n + aev, 
and n + ae~, + ae..  the field is 

A~(x) = [ (x~-n~)A~(n+ae~)+(n~+a-x~)a~ . (n ) ] /a ,  

and the field strength is given by the continuum for- 
mula 

F~a~(x) = OvAl(x)  - O.A~(x)  + 9f~cA~(x)A~(x) .  

The action is then the sum over all plaquettes of the 
integrals over each plaquette of the square of the field 
strength 

a 2 

s = E - -  f d ~ . d x ~ r ; v ( ~ ) : .  p. 2 J 

Finally the mean-value in the vacuum of a euclidean- 
time-ordered operator Q(A) is approximated by a nor- 
malized multiple integral over the A~(n)'s - -  

f e-sCA)Q(A) I] .  .... dAb(n) {nITQCA)In) 
f ~-~(~) 1-I. .... dA~(,~) 

The quantity normally used to study confinement 
in quarkless gauge theories is the Wilson loop. which 
is the mean-value in the vacuum of the path-and-time- 
ordered exponential 

W(r , t )  = ( f~ iPTe- ig f  A:r°~. l f~) /d  , 

where d is the dimension of the matrices T~ that repre- 
sent the generators of the algebra of the gauge group 
and g is the coupling constant. Although Wilson loops 
vanish [13] in the exact theory. Creutz ratios [5] of 
Wilson loops defined as 

[wc~,t )w(~ - a , t -  a)] 
x ( ~ , t )  - - l o g  L W ( r , t  - ~)w(r - ~,t) 

are finite and for large t provide an estimate of the 
static qq force. 

For a representation of a group with N generators 
that satisfy the trace rule Tr(T.Tb) : k6ab, the value 
of the Creutz ratio x(r , t )  in tree-level perturbation 
theory may be expressed in terms of the function 

U(r, t )  = (r/ t)  arctan(r/t) -I- ( t / r )arctan( t /r )  
- I o g ( r  - ~  -t- t - z )  

as  

x(~,t) k N g ~  [ - u ( , - , t )  - v ( , "  - o , , t  - a )  
~2d 

+ ucr, t - a) + ucr - a,t)]. 

Some values of this formula are listed in the table. 
To measure Wilson loops and their Creutz ratios 
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X(r,t) by means of the noncompact method, I used a 
104 periodic lattice, began with cold starts, in which all 
fields were initialized to zero. and allowed 1000 sweeps 
for thermalization. I measured Wilson loops every 10 
sweeps, using all the different r-by-t loops that occur 
in a 104 lattice, including periodic translations and ro- 
tations by ~r/2. I made 100 measurements at/3 = 1. 
fewer at/~ = 30 and 400. Some of the resulting val- 
ues for the Creutz ratios X(r, r) are listed in the table. 
These values are in approximate agreement both with 
perturbation theory and with the X'S obtained by Pa- 
trascioiu et al. [2], who found, for instance, at/3 = 1: 
X(2,2) = 0.1 and X(3,3) = 0.02. 

Table: Noncompact and perturbative Creutz ratios. 
, r t 

a)a 

1 2.2 
3,3 

30 2.2 
3.3 
4.4 

400 2,2 
3.3 
4,4 

Noncompact Perturb. 

0.1254(14) 
0.0233(3g) 
0.00619(I0) 0.00661 
0.00191(25) 0.00218 
0.00067(47) 0.00109 

0.000511(12) 0.000496 
0.000175(28) 0.000164 
0.000071(44) 0.000082 

If the static force between heavy quarks is inde- 
pendent of distance, corresponding to a linear confin- 
ing potential, then the Creutz ratios x ( r , t )  should be 
independent of r and t at least for large t. In his com- 
pact simulations. Creutz found at/~ = 3.25: x(3a, 3a) 
= 0.048 and x(2a, 2a) = 0.12: at ~ = 2.5: x(3a, 3a) 
= 0.10 and X(2a, 2a) = 0.21: at ~ = 2.25: x(3a,  3a) 
= 0.22 and x(2a, 2a) = 0,33: and at /3 = 2.0: 
x(2a, 2a) = 0.60. These data show a clumping of the 
X's in that as/3 ~ 2. X(3,3) approaches X(2,2). an 
effect verified in other Wilsonian simulations. In the 
present non-compact simulations, however. X(3,3) is 
nearly six times smaller than X(2, 2) even at ~ = 1. So 
there is no sign of confinement in these noncompact 
simulations. 

These results and those of the earlier gauge-fixed 
noncompact simulations of SU(2)  may present us 
with a clear conflict between the two methods. But 
the ratio of the energy scale of the continuum the- 
ory to that  of Wilson's lattice theory is quite large. 
reaching AMO~ ~ .  "=(==Z) /'*W = 57.5 for SU(2)  and 83.5 for 
SU(3)  [11]. And because of the closeness of the non- 

compact method to the continuum theory, it is rea- 
sonable to expect that the scale of the noncompact 
method is approximately that of the continuum the- 
ory, ANc AMOM ~(==1)' So for SU(2). the lattice spac- 
ing of the Wilson theory aw(13) should be about 57.5 
times as big as the lattice spacing ajvc(/~) of the non- 
compact method at the same value of /3. Thus to 
display with the noncompact method the clumping of 
the X'S seen with the compact method on a distance 
scale of about 2aw(2). one would have to run either 
at stronger coupling or on a much larger lattice. 

It is probably necessary to run on a bigger lat- 
tice, because if the lattice spacing aNc(13) for /~ _< 2 
varies either as aw(/3) or perturbatively, then it is 
not possible to enlarge aNc(13) by a factor of 57.5 
merely by running at stronger coupling. For if aNc(/~) 
for /3 < 2 varies like aw(/~), i.e. as Iog(4/~) as 
reported by Creutz [5], then even at /~ = 0.1 the 
lattice spacing ¢NC(#) would swell by only a fac- 
tor of 2.3. If aNC varied perturbatively, i.e. as 
ant(~3) = A~vXo(/3 /2N"lo)'r'/2"Y2oexp(-13 / 4N~lo), then 
it would scale by about 49 at/~ = 0.16. If the energy 
scale ANt  really is the same as that of the continuum 
theory, and if the noncompact method does display 
confinement at the same distance scale as the com- 
pact method, then one would have to run simulations 
on a huge 2002-by-3602 lattice to see it. 

We may, however, get some idea from presently 
available data as to whether the two methods are com- 
patible by comparing them at a smaller value of the 
lattice spacing, for instance at aw(/3) = a, NC(1). The 
lattice spacing aNt(l)  is likely to be about 57.5 times 
smaller than aw(1) if the two methods represent the 
same physics apart from the energy scale A. Since [5] 
aw(~) varies as Iog(4/fl) for 1 < /3  < 2. aw(2) should 
be twice as small as aw(1). For/3 > 2. aw(~) varies 
approximately perturbatively. So by/3 = 3.33 it will 
have dropped by another factor of 28.75. for a to- 
tal shrinkage by a factor of 57.5. Thus we expect 
that XNo(r,t) at /~ = 1 should resemble xw(r,t) at 
/~ = 3.33. We have compact data [S] at/~ = 3.25. 
which should be close enough for this comparison with 
my noncompact data at/3 = 1. For the 2a-by-2a ra- 
tios, we have approximate agreement: XNc(2,2) = 
0.125 and Xw(2,2) = O.12. But for the 3a-by-3a 
ratios, we have a conflict: XNc(3,3) = 0.023 and 
Xw(3,3) = 0.048. The compact method assigns to 
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the static force between heavy quarks greater strength 
at r = 3aNc(1) than does the noncompact method. 
This discrepancy suggests that the two methods may 
describe different physics. 

I have also run noncompact simulations of SU(2) 
on a 54 lattice to see whether the Creutz ratios of the 
noncompact method exhibit asymptotic freedom, ac- 
cording to the criterion introduced by Creutz [14]. My 
preliminary results suggest that the XNc's do display 
asymptotic freedom at /~ = 400, which is very weak 
coupling, go = 0.1. but not at ~ = 30 or ~ -- 1. 

In conclusion, both the present noncompact sim- 
ulations of SU(2). which were done without gauge 
fixing, and earlier gauge-fixed noncompact simula- 
tions [2.3] show no sign of quark confinement on a 104 
lattice. This absence of confinement offers some sup- 
port for Gribov's [1] view that confinement occurs only 
in QCD with light quarks and not in pure or heavy- 
quark QCD. However. because the lattice spacing 
aw(~) of Wilson's method is probably much bigger 
than the lattice spacing aNc(13) of the noncompact 
method, it is possible that noncompact simulations 
on much larger lattices might exhibit confinement on 
the scale of aw(~). It would be interesting to see if 
that is, in fact, the case. 
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