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We have apphed a new gauge-invariant, noncompact, Monte Carlo method to simulate U(1), SU(2), and SU(3) 
gauge theories on 84 and 12 ~ lattices. The Creutz ratios of the Wilson loops agree with the exact results for U(1) 
for fl > 1 apart from a renormahzation of the charge. The SU(2) and SU(3) Creutz ratios robustly display quark 
confinement at f~ = 0.5 and f~ = 2, respectively. At much weaker coupling, the SU(2) and SU(3) Creutz ratios 
agree with perturbation theory after a renormali~ation of the coupling constant. For SU(3) the scaling window 
is near f? = 2, and the relation between the string tension cr and our lattice QCD parameter As, is v ~  ~ 5AL. 

1. I N T R O D U C T I O N  

In compact lattice gauge theory, gauge fields 
are represented by group elements rather than 
by fields, and the action is a periodic function 
of a gauge-invariant lattice field strength. The 
periodicity of the action entails spurious vacua. 
The principal advantage of noncompact actions, 
in which gauge fields are represented by fields, is 
that they avoid multiple vacua. 

The first gauge-invariant noncompact simula- 
tions were carried out by Palumbo, Polikarpov, 
and Veselov [1]. They saw a confinement signal. 
Their action contains five terms, constructed from 
two invariants, and involves (noncompact) auxil- 
iary fields and an adjustable parameter. 

The present paper describes a test of a new 
way [2] of performing gauge-invariant noncom- 
pact simulations. Our action, which is similar to 
one term of Palumbo's  action, is exactly invari- 
ant under compact gauge transformations, is a 
natural discretization of the classical Yang-Mills 
action, and reduces to Wilson's action when the 
gauge fields are compactified. In this method 
there are fewer auxiliary fields than in Palumbo's 
method, and they are compact group elements 
representing gauge transformations. 

We have used this method to simulate U(1), 
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SU(2), and SU(3) gauge theories on 8 4 and 124 
lattices. The Creutz ratios of Wilson loops agree 
with the exact results for U(1) for fl _> 1 apart  
from a renormalization of the charge. The SU(2) 
and SU(3) Creutz ratios clearly show quark con- 
finement at fl = 0.5 and fi = 2, respectively. 
At much weaker coupling, the SU(2) and SU(3) 
Creutz ratios agree with perturbation theory with 
a renormalized coupling constant. For SU(3) 
there is a scaling window near fl = 2, and the 
string tension cr is related to the lattice QCD pa- 
rameter AL by v ~ ~ 5AL. I f ~  ~ 420 MeV, 
then our AL is about 84 MeV, and at fl = 2 our 
lattice spacing a is about 0.4 fm. 

2. T H E  M E T H O D  

For massless fermions, the continuum action 
density is 45i7~0~%b. A suitable discretization of 
this quantity is i¢(n)%,[¢(n + e,) - ¢(n)]/a in 
which n is a four-vector of integers representing 
an arbitrary vertex of the lattice, e ,  is a unit 
vector in the ~th direction, and a is the lattice 
spacing. The product of Fermi fields at the same 
point is gauge invariant as it stands. The other 
product of Fermi fields becomes gauge invariant 
if we insert a matrix Am(n ) of gauge fields 

~(~)7~ [i + ig=A~(~)] ¢(~ + ~) ( i) 

that transforms appropriately. Under a gauge 
transformation represented by the group elements 
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U(n) and U(n + e~), the required response is 

l+iagA~(n) = U(n)[l+iagA,(n)]U-l(n+e~).(2) 

Under this gauge transformation,  the lattice field 
strength 

F~,~.(n) = 1 [A~,(n + e~,) - Au(n)] 
a 

1 
- - [ A ~ ( , ~  + e u )  - A ~ ( n ) ]  

a 

+ ig [A~,(n)A,(n + e~,) 
- A ~ , ( n ) A ~ , ( n  + e , ) ] ,  (3) 

which reduces to the continuum Yang-Mills field 
strength in the limit a ---* 0, transforms as 

F~,(n) -- V(n)F~,,(n)U-l(n + e~ + e~,). (4) 

The field strength F ~  (n) is ant isymmetr ic  in the 
indices 1~ and v, but it is not hermitian. To make 
a positive plaquette action density, we use the 
Hilbert-Schmidt norm of F~,.(n) 

= ~--~Tr[F~,,(n)F~,,(n)], (5) S 

in which the generators To of the gauge group are 
normalized as Tr(T,~Tb ) = k6~b. Because F~,,(n) 
t ransforms covariantly (4), this action density is 
exactly invariant under the noncompact  gauge 
t ransformation (2). 

In general the gauge t ransformation (2) with 
group element U(n) = exp(-iagw'2T~) maps the 
mat r ix  of gauge fields Au(n ) = T~,A~(n) outside 
the Lie algebra, apar t  from terms of lowest (ze- 
roth) order in the lattice spacing a. We use this 
larger space of matrices. We use the action (5) 
in which the field strength (3) is defined in terms 
of gauge-field matrices Au(n ) that  are the images 
under arbi t rary  gauge transformations 

1 i v  - -  - + ( V  - w (6)  
a9 

of matrices A °(n)  of gauge fields defined in the 
usual way, - The group ele- 
ments V and W associated with the gauge field 
Au(n) are unrelated to those associated with the 
neighboring gauge fields A~,(n + e,,), A~(n), and 
A~(n+eu).  

The quanti ty 1 + igaAu(n ) is not an element 
L~.(n) of the gauge group. But if one compact-  
ified the fields by requiring 1 + igaAu(n ) to be 
an element of the gauge group, then the mat r ix  
Au(n) of gauge fields would be related to the link 
L~,(n) by A~,(n) = (L~(n) -  1)/(iga), and the ac- 
tion (5) defined in terms of the field strength (3) 
would be, mirabile dictu, Wilson's action: 

S =  2a4g2k 

3. R E S U L T S  

We have tested this method by applying it to 
the U(1), SU(2), and SU(3) gauge theories on 84 
and 124 lattices. In most  of our initial configu- 
rations, the unitary matrices V and W and the 

0 hermitian gauge fields A m were randomized. For 
thermalization we allowed 50,000 sweeps for U(1), 
10,000 for SU(2), and 100,000 for SU(3). Our 
Wilson loops are ensemble averages of ordered 
products of the binomials 1 + iagA~(n) rather 
than of the exponentials exp[iagA~,(n)] around 
the loop. 

For U(1) and for fl > 1, our measured Creutz 
ratios [3] of Wilson loops agree with the exact 
ones apar t  from finite-size effects and a renormal- 
ization of the charge. For instance at/3 = 1 on the 
124 lattice, we found X(2, 2) = 0.147(1), X(2, 3) = 
0.103(1), X(2,4) : 0.090(1), X(3, 3) = 0.049(1), 
X(3,4) = 0.034(1), and X(4, 4) = 0.020(2). The 
first three of these X'S are equal to the exact 
Creutz ratios for a renormalized value offl~ = 0.9; 
the last three are smaller than the exact ratios for 
fir = 0.9 due to finite-size effects by 3%, 8%, and 
16%, respectively. 

But at stronger coupling, the extra terms 
ig[A~(n)Au(n+e~ ) -A~ , (n )A~(n+eu)  ] in the 
lattice field strength F~,~(n) eventually do pro- 
duce a confinement signal. For example, at 
fl = 0.75, our measured Creutz ratios on the 
12' lattice are: X(2,2) = 0.906(5), X(2,3) = 
0.909(21), x(2,  4) : 0.s5(10),  x(3,  3) : 0.62(24), 
and X(3, 4) : 0.6(16). 

For SU(2) on the 84 lattice at fl = 0.5, we 
found x(2,2) = 0.835(3), X(2,3) : 0.852(12), 
X(2, 4) = 0.865(60), and X(3, 3) = 0.94(23) which 
within the limited statistics clearly exhibit con- 
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finement. At /3 : 1, our six Creutz ratios track 
those of tree-level perturbation theory for a renor- 
malized value of f~ -- 1.75. 

For SU(3) at /3 ---- 2 on the 124 lattice, we 
found in ten independent runs X(2, 2) = 0.838(1), 
X(2, 3) : 0.826(3), X(2, 4) ---- 0.828(13), X(3, 3) : 
0.793(42), X(3,4) : 0.47(25), and X(4,4) -- 
1.2(86). Within the statistics, these results ro- 
bustly exhibit confinement. At much weaker cou- 
pling, our ratios agree with perturbation theory 
apart  from finite-size effects and after a renormal- 
ization of the coupling constant. 

4. S C A L I N G  

We used an 84 lattice to study the scaling of the 
lattice spacing a with the coupling constant g for 
SU(3). The two-loop result for the dependence of 
the string tension ~ra ~ upon the inverse coupling 
t3 : 6/g 2 is 

era2 ~ A-~-LL exp - - - - ~  + 1-~ l°g \ 33 ] J "  (7) 

If we set ~ ~ (5.0 ± 0.4)AL, then our x(i, j ) ' s  
fit this formula for 1.9 < fl < 2.1 as shown in the 
figure. A string tension v G  ~ 420 MeV implies 
that  AL ~ 84 MeV, which is about 11 times closer 
to the the continuum A (°) than is the parameter 

S , 
ALW ~ 7.9 MeV of W i ~ n  s method. At f~ : 2, 
our lattice spacing a is about 0.4 fin. 
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Figure 1. The SU(3) Creutz ratios x( i , j ) ,  the 
scaling predictions for the string tension aa  2, and 
the tree-level curves for X(2, 2) (dots) and X(4, 4) 
(dashes) are plotted against/3. For 1.9 < 13 < 2.1, 
some of the symbols of the X'S overlap. 
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