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Inflation pressures 
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Abstract. If the sum of the energy density p and thrice the pressure p is negative, then a 
Robertson-Walker universe can inflate or even oscillate. But we show at the one-loop level that 
in a generic grandly unified theory p t 3p cannot be negative at the absolute minimum of lhe 
finitetemperature effective potential. We discuss the implications of this result for inflation in 
two grandly unified theories and speculate on the effects of gravitational friction and anti-friction. 

1. The inflation pressure 

In the early universe, the sum of the energy density p and three times the pressure p is a 
crucial quantity. In a homogeneous and isotropic universe, the sum p + 3 p  determines the 
acceleration R of the scale factor R 

R 4rrc 
(P + 3 P )  - - _ _  - 

R 3 

Inflation, which is characterized by an exponentially increasing scale factor, can occur only 
when p f 3 p  is negative. If p + 3 p ,  which might be called the ingalion pressure, is negative 
and constant, then the scale factor R may inflate [ 1-41 as 

~ ( t )  = e " ~ 0  ( 2 )  

with HZ = -4rrG(p + 3 p ) / 3 .  But when the inflation pressure p + 3p is positive, the 
universe cannot inflate. 

The inflation pressure also determines whether a uniform universe has had an initial 
singularity. If p + 3 p  has always been positive, then R has always been negative and the 
velocity R of the scale factor must always have been greater than at present. Thus at some 
finite time in the past the scale factor R must have vanished: there was an initial singularity. 

The opposite scenario can occur in a contracting universe if the inflation pressure is 
negative and the Higgs field c$ lies at a local minimum c$o of the effective potential with 
free energy V ( &  T )  e VO - rr2NT4/90. In this case the scale factor may vary inversely 
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with the temperature, R = a / T ;  and the universe may exhibit deflation followed by inflation 
according to the non-singular solution [5] 
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R ( t )  = RI  1 + (1 - ,tZ)‘/2COSh - . (3) [ “‘l’/’ RI 

For typical values of VO, the constants RI  = J3/(16nCVo) and x = 2(2~a/3)~-  
are such that the minimum radius of this bounce solution exceeds the Planck length by a 
factor of a million or more. 

In this paper we shall discuss the inflation pressure p+3p in terms of the one-loop, finite- 
temperature effective potential [6] for a gentric grandly unified model [7]. The effective 
potential V(@, T )  is the Gibbs free energy of the particle theory; it is a function of the Higgs 
field and the temperature. We shall show that whenever the Higgs field is at the absolute 
minimum of V ( @ ,  T ) ,  then the inflation pressure p + 3p cannot be negative, which implies 
that 8 e 0. This result is a constraint upon inflation and particularly upon oscillation. 

We then numerically describe the behaviour of the inflation pressure in two simple, 
grandly unified models and the implications of that behaviour for inflation. For the SCJ(5) 
model of Albrecht and Steinhardt [4, 81, inflation begins when the temperature has dropped 
below T,  = O.O755u, where U is the scale of grand unification. In a generic supersymmetric 
grandly unified model, inflation cannot start until the temperature is below Tj = 0 . 1 2 3 ~  and 
then not unless the Higgs field lies in the region of negative inflation pressure. 

Finally we argue that the effects of gravitational friction and anti-friction may allow 
some portions of a locally non-uniform, contracting universe to avoid a singularity and 
re-expand. 

2. The finitedemperature effective potential 

We shall assume that the breaking and restoration of symmetry can be described by a 
finite-temperature Higgs mechanism 161 in a generic model of particle physics with grand 
unification [7] at an energy scale U .  For simplicity we shall consider only the modulus 
of the mean value GC @ of the Higgs field. We shall also restrict ourselves to the case 
of weak Higgs self-coupling so that we can ignore the contributions of the scalar loops, 
which require special treatment [9]. If the Higgs field is described at the one-loop level 
by the zero-temperature effective potential VI (@), then for finite temperatures the one-loop 
effective potential V(@, T) is of the form 

V ( @ ,  T )  = VI(@) + T4i (@’ / r2 ) .  (4) 

Here the one-loop, zero-temperature effective potential VI (@) is the sum of the classical 
potential Vo(4) and the one-loop contributions 

one for each fermion and gauge boson of spin j, and maSs mi (@) = c;@, with Dirac fermions 
being counted as two two-component spinors. The function i ( @ 2 / T 2 )  is a similar sum of 
integrals 
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It is strictly negative for all @ and T ,  

I (@Z/T*)  < 0 .  

The product T4/(@'/T') contains all the temperature dependence of the one-loop, finite- 
temperature effective potential V ( @ ,  T). 

If b is the number of gauge bosons and f the number of fermions (with electrons and 
positrons counted together as one), then at very high temperatures, T >> mi(@) for all 
particles i. we may expand the effective potential as 

where N is the effective number of degrees of freedom N = 3b + 7 f/2, n = 3b + 2 f, and 
%(@) = F@ is an average mass. At such high temperatures, the absolute minimum of the 
effective potential is at @ = 0, and the symmetry of the Lagrangian is restored. 

At low temperatures, the effective potential is approximately 

and its minima are those of VI (@) which spoil the symmetry of the Lagrangian. We shall 
take these minima to lie at @ = U, the scale of grand unification. 

3. The  minimum of the effective potential 

We shall now show that at the absolute minimum of the one-loop, finite-temperature effective 
potential 

V ( @ ,  T )  = VI(@) + T41(@' /TZ) ,  (10) 

which is the Gibbs free energy, the inflation pressure p + 3 p  cannot be negative. Since in a 
homogeneous isotropic universe, a positive inflation pressure rules out inflation, this result 
is a constraint upon inflationary models. We shall assume that in our generic grandly unified 
model, the ground-state or vacuum energy vanishes so that the one-loop, zero-temperature 
effective potential VI(@) is positive except at its global minimum @ = U where it is zero. 

Now, the function I(@'/T') is negative as noted in (7), and so 

V ( @ ,  T )  < V ( @ ,  0) .  (11) 

Also, as its argument @'/T2 goes to infinity, the function 1 (e2 /T2)  tends monotonically to 
zero from below. Thus its derivative I' = I'(@'/T*) with respect to its argument @ ? / T 2  is 
positive, 

I ' > O .  (12) 

In terms of VI = VI(@), I ,  and I' ,  the energy density 

P = V ( @ .  T )  - Tal'(@, T ) / a T  (13) 
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is 
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p = V ,  - 3T41 + 2xP2TZI' 

p = - V l - T  4 I .  

(14) 

and the pressure p = - V ( @ ,  T )  is 

(15) 

So the inflation pressure p + 3p is the sum of three terms 

p + 3 p  = -2Vi - 6T41 + 242T21'. (16) 

Of these terms only the first is negative. 

we must have 
Now, if the field @ is at the absolute minimum of the effective potential V ( @ ,  T ) ,  then 

V(@,T)=  V i ( @ ) + T 4 T ( @ * / T 2 ) <  V ( u , T ) <  V ( 0 , 0 ) = 0  (17) 

where the second inequality follows from ( 1  1). Hence 

- T41 2 V I  2 0 (18) 

and so the inflation pressure p + 3p exceeds the sum of two non-negative terms 

p + 3 p  2 4Vi + 2b2T21' 2 0 (19) 

and therefore is non-negative. 

potential, then 
Thus if the Higgs field remains in equilibrium at the absolute minimum of the effective 

R = -47tC(p + 3p)R/3  < 0 .  (20) 

The acceleration R of the scale factor is then negative or zero, and neither inflation nor a 
bounce is possible. 

4. Implications for inflation 

Obviously this result is a constraint upon inflation. At the very high temperatures of an 
early, post-big-bang, Robertson-Walker universe, the absolute minimum of the effective 
potential is at @ = 0, and the symmetry of the Lagrangian is restored. At such high 
temperatures, the inflation pressure p + 3p is typically positive for many models of particle 
physics, and inflation cannot begin until the temperature has dropped considerably. For two 
generic, grandly unified models, we have numerically integrated the equations (4)-(6) and 
(14) which determine the one-loop inflation pressure, In the SU(5) model of Albrecht and 
Steinhardt [4,8], inflation begins when the temperature has dropped below = O.O755u, 
where U = 2 x 10'' GeV is the scale of grand unification. In a supersymmetric model, 
we found that inflation cannot s ta t  until the temperature has dropped below = 0.123u, 
where U = 10l6 GeV is the scale of grand unification, and then not unless the Higgs field 
is i n  the region of negative inflation pressure when T c Z. 
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The first model is the S U W  model of ‘new inflation’ discussed by Albrecht and -_- 
Steinhardt [4,81 in which there are twelve heavy gauge bosons. The. one-loop zero:--- 
temperature effective potential VI ($) is of the Coleman-Weinberg form 

with O I C ~  = 1/45 at U = 2 x IOr5  GeV. The heavy gauge bosons have a common mass 
m(q5) = J=$, and the function /($’/T2) of (6) is 

In this model twelve gauge bosons and all the fermions are light; these light particles have 
a negligible effect upon the effective potential. We ignore the effects of these light particles 
as well as those of loops of Higgs bosons. 

At temperatures T > U above the scale of unification, the global minimum of the 
effective potential V(q5, T )  is at $ = 0 where V ( 0 ,  T )  << 0, and the inflation pressure 
p + 3p is large and positive. At T = U, the global minimum of V(q5,o) is still 
at q5 = 0 where V(0.u) = -10232Vj(O) as compared with its value at q5 = U of 
V(O, U) = -9864Vl(0). (Here and throughout our discussion of these models, the number 
of significant figures quoted is subjective and does not reflect the errors due to the use 
of the one-loop approximation.) The inflation pressure is hugely positive with a value of 
p + 3 p  = 61 395Vl (0) at $ = 0. When the temperature T has dropped to T = 0.1270, 
a second minimum begins to develop near $ = 0.800. The critical temperature T, is 
0.10650. The two local minima are at $ = 0 and at $ = 0.9% and have the equal 
values V(0 ,  TJ = V(0.950, T,) = -0.310. These minima are separated by a maximum of 
V(0.50, T,) = -0.0160 at $ = OSa,  and so the phase transition is first order. 

The inflation pressure initially turns negative when the temperature falls to T = 0.0820, 
attaining the value of p + 3p = -O.O1V1(0) near q5 = 0.50. But inflation probably does 
not start until the temperature has dropped further to = 0.07550. At this temperature 
the inflation pressure is negative for $ < 0.750. In particular the inflation pressure is 
negative, p + 3p = -0.005V1(0), near q5 = 0 which is now a high local minimum of the 
effective potential, V(0, Ti) = 0.67Vl(0). At T < Ti, the global minimum is at $ = U 

where V(O, T i )  = -O.O29Vl(0). In this theory the point q5 = 0 is always a local minimum 
of the one-loop effective potential V($, T ) .  Thus the Higgs field remains trapped at 4 = 0 
until either the one-loop approximation loses its  validity or the field $ tunnels through 
the potential barrier, which becomes ever thinner and shallower as the temperature drops. 
Below T = 0.05a, the inflation pressure is negative for I$ - 0 1  3 0.030. (Throughout this 
paper, we are using $ to mean the length 1$1 of the vector of Higgs fields.) 

and continues until the Higgs field enters a 
region in which the inflation pressure is positive or until this semi-classical picture is no 
longer adequate. 

The second model is a nearly supersymmetric, grandly unified model with 6 = 100 
kinds of gauge bosons and f = 75 kinds of fermions. For simplicity, we set the Yukawa 
constants ci = f for all i .  In this case all the gauge bosons and fermions have the same mass 
mi(@) = $/2, and the one-loop, zero-temperature effective potential reduces to the tree-level 
potential which we took to be Vo(q5) = (h/4!)($’ -U’)’ with h = I and U = IOL6 GeV. 

At a temperature ten times the unification scale T = 100, the minimum of the effective 
potential V(q5, T )  is at $ = 0, but this minimum is very shallow: V ( 0 ,  IOU) is lower 

In this model inflation begins at T = 
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than V(a, IOU) by less than one part in a thousand; both are large and negative, about 
-1.5 x lO7V0(O). At this temperature the inflation pressure (13) is enormously positive, 
being 8.9 x 107V0(0) at @ = 0. At a temperature equal to the unification scale, T = a ,  the 
inflation pressure is still huge: p + 3 p  = 8881 Vo(0) at @ = 0, which is the absolute minimum 
of the effective potential. At this temperature, the effective potential at @ = 0 is - 1479Vo(O) 
which is 7% lower than at @ = a. By T = 0.2~7, the inflation pressure has dropped to 
12V0(0) at @ = 0. The minimum of V(@,  0.20) is still at @ = 0, where it is now -1,37Vo(O) 
which is 54% lower than its value V ( a ,  0.20.) = -0.89Vo(O) at @ =a.  At T = 0.189a. a 
second minimum develops near @ = 0.650. The critical temperature is T, = 0.18a, and the 
phase transition is first order since the minima V(0, T,) = V(O.8a, T,) = -0.55Vo(O) are 
separated by a potential barrier with a maximum of -0.490 at @ = 0 . 4 ~ .  By T = 0.133a, 
the local minimum at @ = 0 has disappeared, and the value there of the effective potential 
has risen to V(O,O.I33a)  = 0.54Vo(O) which is considerably greater than its minimum 
value of -O.OSVO(O) at @ = 0 . 9 7 ~ .  The Higgs field can roll down to @ = a. But the 
inflation pressure is positive for @ < 1.20. 

Inflation cannot start until the inflation pressure becomes negative which happens for 
0 . 1 5 ~  & @ & 0.400 when the temperature has fallen to T = 7; = 0.1236. If the Higgs 
field is still i n  this region of negative inflation pressure when T < 7; ,  then inflation will 
occur in this model. At T = 0.122a, the inflation pressure is negative for @ < 0.450. 
At T = 0.1220, the symmetric point @ = 0 is a local maximum of the effective potential 
V(O,O.IZa)  = 0.67Vo(O), the absolute minimum being at @ = a where it is slightly 
negative, V(cr,O.l2a) = -O.O4Vo(O). At T = u/lO, the inflation pressure runs from 
-1.lIVo(O) at @ = 0, where V(0 ,O . Ia )  = O.S5Vo(O), through zero at = 0.850 
to 0.09V0(0) at @ = a, where V(o,O.la) = -O.OlVo(O). At temperatures lower than 
T = 0.050, the absolute minima of the effective potential are near @ = a, and the inflation 
pressure is negative for I@ - a [  > 0.0050. 

In this model, inflation may not occur at all. But if as the temperature drops below 
7; = 0.123~. the region of negative p + 3 p  grows faster than @, which is slowed by 
gravitational friction, then there could be substantial inflation. 
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5. Gravitational friction and anti-friction 

In a Robertson-Walker universe, the field equation for the evolution of the mean value @ 
of the Higgs field is 

4 = -3R$/R - VI(@, T )  (23) 

in which spatial derivatives have been suppressed and V'(@, T) = a V ( @ ,  T)/a@. The term 
-3R4 arises from the coupling of the Higgs field @ to the gravitational field and can force 
@ from its equilibrium position when R and d, are appreciable. As the universe contracts, R 
is negative, and so 4 cx 4. Thus for R < 0. any motion of the Higgs field @ is accelerated: 
there is anti-friction or negative friction. As the universe expands, R is positive, and so 
4 c( -4: any motion of @ is slowed by gravitational friction. 

At the one-loop level, since /' > 0 for all @ and T ,  the force -V'(@, T )  due to the 
temperature-dependent part of the effective potential is negative where V@) 0, which is 
true near @ = 0 and @ = a. These regions of negative -VI(@, T )  grow with the temperature 
T and merge when symmetry is restored. While the field @ i s  in these regions, it is forced 
toward @ = 0 and its speed -4 increases. Thus, although between these regions (and before 
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symmetry restoration) the force -VI(@, T) is positive, i t  may be possible during a collapse 
for negative gravitational friction to push the Higgs field into a region of negative inflation 
pressure (closer to the symmetric point q5 = 0), and then for gravitational friction to keep it 
there during a subsequent expansion. By this mechanism it may be possible for some parts 
of a collapsing universe to avoid an initial singularity. 

Our numerical computations of the effective potential V(q5, T) and of the inflation 
pressure p + 3p for the two models studied in the last section suggest various possibilities. 
One scenario applies only to the SU(5)  model of Albrecht and Steinhardt [4, 81 and other 
theories in which the symmetric point q5 = 0 can be a local minimum of the effective 
potential with negative inflation pressure. In that model the inflation pressure is negative 
near q5 = 0 when T < Z = 0.07550 and also negative for Iq5 - 0 1  > 0.030 when 
T g 0/20. The regions of negative -V'(q5, T) grow with T and merge at T = 0.1280 
when the symmetry is restored. In this scenario the Higgs field arrives at the lip of the 
cup of the local minimum at q5 = 0 where p + 3 p  < 0 with so slow a speed 4 and at 
such a time that it is still within the cup as the universe begins to expand. The chances 
of such lucky timing may be very small [lo]. But in a locally non-uniform universe, there 
are many somewhat different sets of initial conditions, and so although the timing required 
for a bounce may be exquisitely precise, it is plausible for the required timing to occur in 
some small regions. These regions then inflate. 

In another scenario, which applies to both the SU(5)  model and the SUSY-GUT model, 
the Higgs field is driven by negative friction and so oscillates about the minimum of the 
effective potential with increasing amplitude. In such models the field q5 may spend most of 
its time in regions of negative inflation pressure when T g 0/20,  since at such temperatures 
p + 3 p  is negative for Iq5 - 0 1  t 0.030 in the SU(5)  model and for Iq5 - 0 1  > 0.0050 in 
the SUSV-GUT model. If the contraction of the universe reverses while the E g g s  field is in 
such a region, then gravitational friction may hold it there long enough for the universe to 
inflate substantially. 
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