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DOES P U R E  SU(2) GAUGE T H E O R Y  C O N F I N E ?  ~ 
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Noncompact simulations of pure SU (2) without gauge fixing on a 10 4 lattice are consistent with perturbation theory at very 
weak coupling but show no evidence of quark confinement at strong coupling. 

It is generally believed that quarks are confined by 
a nearly linear potential that is a property of  the Q C D  
vacuum, having little to do with the nature o f  the 
quarks beyond their color charges. This belief may be 
partly due to the many fruitless theoretical attempts 
made during the 1970's to derive confinement in pure 
or quarkless QCD. The best evidence that pure QCD 
confines comes from the impressive lattice simula- 
tions that Creutz [ 1 ] and others have carried out us- 
ing Wilson's formalism [ 2 ]. 

While this belief in a linearly confining potential is 
widespread, it is not quite unanimous. Some doubts 
have arisen because confinement is a nearly univer- 
sal feature o f  Wilson's formalism, holding in the 
strong-coupling limit even for abelian gauge groups 
in spacetimes o f  any dimension. Thus it is not clear 
whether the confinement seen in Creutz simulations 
is an artifact of  Wilson's formalism or a property of  
QCD. 

Confinement is built into Wilson's method be- 
cause its basic variables are elements of  a compact  
gauge group rather than real numbers as in contin- 
uum gauge theory and because the Wilson action is a 
function o f  the product o f  the group elements o f  the 
links around the elementary squares of  the lattice. The 
Wilson action consequently possesses multiple min- 
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ima, some of  which correspond to false vacua not 
present in the cont inuum theory [ 3,4]. These extra 
vacua make a major contribution to the string ten- 
sion, as has been shown by Mack and Pietarinen [ 5 ] 
and by Grady [ 6 ]. In their simulations of  SU (2),  they 
modified Wilson's action gauge invariantly by erect- 
ing, in effect, infinite potential barriers between 
the true vacuum and the false vacua. Mack and Pie- 
tarinen found a sharp drop in the string tension; 
Grady found no string tension at all. 

Wilsonian simulations of  abelian theories exhibit 
deconfining phase transitions at weak coupling. It has 
recently been suggested that this is also the case for 
nonabelian theories. Thus Grady [ 6,7 ] has found that 
the SU(2 )  theory in four dimensions is consistent 
with a correlation-length exponent o fv  ~ ] and a crit- 
ical point offl¢~ 2.47. For SU(3)  he found v~  1 and 
tic ~ 6.69. Patrascioiu, Seiler, Linke, and Stamatescu 
[ 8 ] argue that all zero-temperature lattice theories in 
three or more dimensions must undergo a phase tran- 
sition that is the limit of  the finite-temperature de- 
confining transition. For SU (2) on a small lattice, 
they found tic ~ 2.3. 

To avoid the artifacts of  the Wilson action, some 
physicists have developed Monte Carlo simulation 
methods [3,4,9-13] that do not have confinement 
built in. These methods are called "noncompac t"  be- 
cause their basic variables are fields rather than group 
elements as in Wilson's "compact"  method. One dif- 
ference between the two kinds of  method is that the 
compact method has an exact lattice gauge symmetry 
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that is different from the gauge invariance of the con- 
tinuum theory, while the noncompact methods have 
an approximate version of continuum gauge invari- 
ance. It is not clear which side of  this tradeoffis more 
accurate for nonabelian theories. For U( 1 ) the non- 
compact method is accurate at all coupling strengths 
[ 12 ], whereas the compact method is accurate only 
at weak coupling. Noncompact simulations have 
shown no sign of quark confinement. 

How are quarks confined, if not by the vacuum of 
pure QCD? Gribov has suggested [ 14 ] that the exis- 
tence of light quarks is a necessary part of  the mech- 
anism of quark confinement and that confinement 
arises because the asymptotically free QCD force be- 
tween a separating quark-antiquark pair eventually 
becomes strong enough to pair-produce up and down 
quarks. In his view confinement is not a property of  
QCD without quarks or with quarks that are all heav- 
ier than the QCD scale A. 

The present paper describes the first noncompact 
simulations of  pure SU (2) that have been done with- 
out gauge fixing in four dimensions [ 15 ]. These sim- 
ulations are consistent with perturbation theory at 
very weak coupling but show no evidence of quark 
confinement at strong coupling. They support 
Gribov's suggestion that pure QCD does not confine 
and confirm earlier gauge-fixed noncompact simula- 
tions [9,10], but disagree with the usual compact 
wilsonian simulations [ 1,2 ]. Yet the present non- 
compact simulations, done on a 104 lattice, do not 
exclude the possibility that noncompact simulations 
done on a much larger lattice might display some sort 
of confinement - a possibility that may be relevant 
because the lattice spacing aNc(fl) of the noncom- 
pact method is likely to be much smaller than that of 
Wilson's method. 

The first noncompact simulations of SU (2) which 
were done by Patrascioiu, Seiler, and Stamatescu [ 9 ] 
who used for the field strength o fa  plaquette the sim- 
ple discretization 

Fa(puv) = A~u(n+ae~)-Aau(n) 
a 

Aa(n+aeu) -A '~(n)  
a 

b c +gf~b~Au(n)A~(n) , (1) 

in which the vector n labels the vertices of  the lattice. 
Their action was the sum 

a 4 
S =  ~ -~ Fa(p,uv) 2 ( 2 )  

pgv 

over all plaquettespu~ and colors a (but not also over 
/t and v). Because this action has many zero modes, 
they fixed the gauge choosing the temporal gauge for 
its theoretical simplicity. They saw a force law rather 
like Coulomb's law and found agreement with 
asymptotic freedom. 

Seiler, Stamatescu, Wolff, and Zwanziger [ 10 ] used 
the more symmetrical field strength obtained by re- 
placing the A's in the quadratic part of  Fa(pu~) by 
--a 

Au(n)=½[Aau(n+ae~)+Aau(n)] with a similar 
expression forA a (n). The resulting action S has fewer 
zero modes but still requires gauge fixing. They used 
a technique called stochastic gauge fixing developed 
by Zwanziger [ 16 ]. Their simulations were also con- 
sistent with asymptotic freedom but not with quark 
confinement. 

Gauge fixing is undesirable because of the Gribov 
ambiguity [ 17 ], because Faddeev-Popov ghost fields 
are fermionic and so are hard to handle, because the 
integrations over the gauge copies help enforce Gauss' 
law, and because it is not possible to transform an 
arbitrary gauge configuration into some gauges, such 
as the temporal gauge, while preserving periodic 
boundary conditions in a finite spacetime [ 3 ]. To be 
able to integrate over all gauge configurations, it is 
necessary to use an action that is quite free of zero 
modes. One way to do this is to interpolate the fields 
throughout spacetime from their values at the ver- 
tices of a lattice tiled with simplices [ 3,4,11-13 ]. In 
four dimensions, however, the Fortran source code is 
over 600 K bytes and the program is slow. 

One may shorten the code and increase its speed 
by adopting Wilson's structure of links and pla- 
quettes and by linearly interpolating the fields 
throughout the plaquettes. The fields are then con- 
stant on the links of length a, the lattice spacing, but 
are interpolated linearly throughout the six trans- 
verse plaquettes. In the plaquette with vertices n, 
n+e  u, n+e~ and n+eu+e~, the field is 

Aau(x) = (xJa-n~)Aau(n+e~)  

+ (n~ + 1 - x J a ) A a u ( n ) ,  (3) 
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and the field strength is given by the continuum 
formula 

a a +gOCaocAu(X)h u(X) • Fu,(X) = O~Au(x ) _ OuAa(X) b c 
(4) 

The action is the sum over all plaquettes of  the inte- 
grals over each plaquette of  the square of the field 
strength 

s=  ~ a---~ ~ dxudx~Fu~(X) z . (5) 
p~tv 

The mean-value in the vacuum of a euclidean-time- 
ordered operator Q(A) may then be approximated 
by a normalized multiple integral over the A ~ (n) 

( DI Y- Q(A ) ]I2) 

.~ f e x p [ - S ( a ) ]  Q(A) IIu.a,,dA~u(n) (6) 
f e x p [ - S ( A )  l 1-Iu,=.,dA"u(n) ' 

which one may estimate by Creutz's Monte Carlo 
techniques [ 1 ]. 

The quantity normally used to study confinement 
in quarkless gauge theories is the Wilson loop, which 
is the mean-value in the vacuum of the path-and-time- 
ordered exponential 

, 
W(r,t)= ~t (g21~Y-exp ig AuTadX u ll2) , 

(7) 

where d is the dimension of the matrices Ta that rep- 
resent the generators of the algebra of the gauge group 
and g is the coupling constant. Although Wilson loops 
vanish [ 18 ] in the exact theory, Creutz ratios [ 1 ] of 
Wilson loops defined as 

( W ( r , t ) W ( r - a , t - a ) ~  x(r, t) - l o g \  W(r, t - a ) W ( r - a ,  t) ] (8) 

are finite and for large t provide an estimate of  a 2 
times the force between a quark and an antiquark 
separated by a distance r. 

For a representation of a group with N generators 
satisfying the trace rule Tr(TaTb) = kOab, the value of 
the Creutz ratio Z (r, t) in tree-level perturbation the- 
ory may be expressed in terms of the function 

U(r, t) = ( r/ t) arctan(r/t) + ( t/r) arctan( t/r) 

- l o g ( r - 2 + t  -2) (9) 

as  

kNg 2 
x(r, t) = ~ [ - U(r, t) - U(r -a ,  t - a )  

+ U(r, t - a )  + U(r -a ,  t) ] .  (10) 

Kirschner, Kripfganz, Ranft, and Schiller [ 19 ] have 
calculated the order-g4th correction to this formula; 
some values of their formula are listed in table 1 for 
different values of  the SU (2) inverse coupling/~= 4/  
gZ. 

To measure Wilson loops and their Creutz ratios 
x(r, t) by means of the noncompact method, I used a 
104 periodic lattice, began with cold starts, in which 
all fields were initialized to zero, and allowed 1000 
sweeps for thermalization. I measured Wilson loops 
every 10 sweeps, using all the different r-by-t loops 
that occur in a 104 lattice, including periodic trans- 
lations and rotations by n/2. I made 100 measure- 
ments at p =  1, fewer at/~= 30 and 400. Some of the 
resulting values for the Creutz ratios x(r, r) are listed 
in table 1. These values are in approximate agree- 
ment both with perturbation theory and with the Z's 
obtained by Patrascioiu et al. [ 9 ], who found, for in- 
stance, a t p =  1, x(2a, 2a) =0.1 andx(3a ,  3a) =0.02. 

I f  the static force between heavy quarks is indepen- 
dent of distance, corresponding to a linear confining 
potential, then the Creutz ratios z(r, t) should be in- 
dependent of r and t at least for large t. In his compact 
simulations [ 1,20], Creutz found at/~=3.28, z(3a, 
3a) =0.047 and z(2a,  2a) =0.114; at/~=2.80, x(3a, 
3a) =0.067 and z(2a, 2a) =0.148; at/~= 2.49, z(3a, 
3a) =0.100 and x(2a, 2a) =0.214; at fl= 2.29, x(3a, 
3a) =0.213 and z(2a, 2a)=0.331;  and at p=2.00,  

Table 1 
Noncompact and perturbative Creutz ratios. 

fl r /a , t /a  Noncompact Pe~urbation 

1 2,2 0.1254(14) 
3,3 0.0233(39) 

30 

400 

2,2 0.00619(10) 0.00657 
3,3 0.00191(25) 0.00217 
4,4 0.00067(47) 0.00109 

2,2 0.000511(12) 0.000496 
3,3 0.000175(28) 0.000163 
4,4 0.000071(44) 0.000082 
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x(2a, 2a) = 0.603. These data show a clumping of the 
Z's in that as f l~2,  x(3a, 3a) approaches x(2a, 2a),  
an effect verified in other wilsonian simulations. In 
the present noncompact simulations, however, even 
atf l= 1 x(3a, 3a) is nearly six times smaller thanx(2a, 
2a). So there is no sign of confinement in these non- 
compact simulations. 

These results and those of  the earlier gauge-fixed 
noncompact simulations of  SU (2) may present us 
with a clear conflict between the two methods. But 
the ratio of  the energy scale of  the continuum theory 
to that of  Wilson's lattice theory is substantial, reach- 
ingAh%~)/Aw=57.5 for SU(2)  and 83.5 for SU(3)  
in the renormalization scheme based on momentum- 
space subtraction in Feynman gauge [ 21 ]. For SU (2) 
in the minimum-subtraction schemes [22], the ra- 
tios are A~s=~)/Aw = 19.89 and A~s=')/Aw=7.48. 
Because the noncompact method imitates the contin- 
uum theory, it is reasonable to expect the scale of the 
noncompact method to be approximately in the range 
of those of the continuum theory, A~s=~)~<ANc 
~<A (==,) Thus even if the two methods do represent I M O  M • 

substantially the same physics, the lattice spacing of 
the Wilson theory aw(P) for SU(2)  should be be- 
tween about 7 and 58 times bigger than the lattice 
spacing aNc(/~) of  the noncompact method at the 
same value of/~. So to display with the noncompact 
method the clumping of the X's seen with the com- 
pact method on a distance scale of  a few aw (2),  one 
would have to run either at stronger coupling or on a 
much larger lattice. 

It is necessary to run on a larger lattice because for 
p <  2 the Wilson lattice spacing aw(/~), varies [ 1 ] as 
log(4/fl). Thus even by running at/~= ~ one gains only 
by a factor 4. 

We may, however, get some idea from presently 
available data as to whether the two methods are 
compatible by comparing them at a smaller value of 
the lattice spacing, for instance at aw(f l )=aNc(  1 ). 
The noncompact lattice spacing anc( 1 ) is likely to be 
from about 7 to 58 times smaller than the Wilson lat- 
tice spacing aw( 1 ) if  the two methods represent the 
same physics apart from the energy scale A. Since the 
Wilson lattice spacing aw(fl) varies as log(4//~) for 
fl~<2, it follows that aw(2)  should be twice as small 
as aw( 1 ). Forfl>~ 2, aw(/~) varies approximately per- 
turbatively as 

aw(fl) =A~, 1 (fl/2nTo) r,/2y~ exp( -/~/4n7o) ( 11 ) 

for SU (n),  where 

7 o = ( 1 / 1 6 n Z ) ( l l n / 3 ) ,  

Y, =(1/16r&)z(34n2/3) • (12) 

So by fl=2.5, the Wilson lattice spacing aw(fl) will 
have dropped by another factor of  3.5, for a total 
shrinkage by a factor of 7. Thus if the ratio of the scale 
factors ANc/Aw= 7, then ZNC(r, t) a t f l=  1 should re- 
semble Xw (r, t) at fl= 2.5. But Creutz's values for Zw 
at f l -2 .5 ,  cited earlier, exceed my values for XNc at 
f l= 1, quoted in table 1, by about 1.7 for the 2 × 2 loop 
and by about 4.3 for the 3 × 3 one. So the ratio of  the 
scale factors seems larger than 7. 

By fl= 3.28, the Wilson lattice spacing is about 51 
times smaller than at fl= 1. Thus if the ratio of  the 
scale factors ANc/Aw=51, then ZNc(r, t) at fl= 1 
should resemble Zw (r, t) at fl= 3.28. For the 2 × 2 ra- 
tios, we have approximate agreement: XNc(2a, 
2a) = 0.125 and Zw (2a, 2a) = 0.11. But for the 3 × 3 
ratios, we have a conflict: XNc(3a, 3a)=0.023 and 
Xw (3a, 3a) = 0.048. The compact method assigns to 
the static force between heavy quarks greater strength 
at r ~  3aNc( 1 ) ~ 3aw(3.28) than does the noncom- 
pact method. This discrepancy suggests that the two 
methods may describe different physics. 

I have also run noncompact simulations of  SU (2) 
on a 54 lattice to see whether the Creutz ratios of the 
noncompact method exhibit asymptotic freedom, ac- 
cording to the criterion introduced by Creutz [23 ]. 
My very preliminary results suggest that the ZNc'S 
seem consistent with asymptotic freedom at f l= 400, 
which is very weak coupling, go = 0.1, but not at fl= 30 
orf l=  1. 

In conclusion, both the present noncompact simu- 
lations of SU (2), which were done without gauge fix- 
ing, and earlier gauge-fixed noncompact simulations 
[ 9,10 ] show no sign of quark confinement on a 104 
lattice. This absence of confinement offers some sup- 
port for Gribov's [ 14 ] view that confinement occurs 
only in QCD with light quarks and not in pure or 
heavy-quark QCD. Yet because the lattice spacing of 
Wilson's method is probably much bigger than that 
of  the noncompact method at the same value of  the 
coupling, it is possible that noncompact simulations 
on much larger lattices might exhibit some sort of  
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conf inement .  But the present  s imula t ions  suggest that  
even  w h e n  such d i f ferences  o f  scale are  taken  in to  ac- 
count ,  the stat ic  q(t force o f  the n o n c o m p a c t  m e t h o d  
falls o f f  m u c h  faster  wi th  d i s tance  than  does  that  o f  
Wi l son ' s  fo rmal i sm.  
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S. Co leman ,  J. Coll ins,  M. Creutz ,  N.  Dur ic ,  V.N. 
Gr ibov ,  P. Horowi t z ,  E. Kovacs ,  S. Prasad,  V. 
Rebhahn ,  D.  Sinclair ,  J. Smit ,  and  A. Whi t e  for  use- 
ful conversa t ions ,  to F. P ipk in  for  hospi ta l i ty  dur ing  
my  sabbat ical  year  at Ha rva rd ,  and  to A. Whi t e  for 
hospi ta l i ty  at A r g o n n e  dur ing  the  s u m m e r  o f  1989. 
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References 

[] M. Creutz, Phys. Rev. D 21 (1980) 2308; Phys. Rev. Lett. 
45 (1980) 313; Quarks, gluons and lattices (Cambridge 
U.P., Cambridge, 1983). 
K. Wilson, Phys. Rev. D 10 (1974) 2445. 

[3 ] K. Cahill, M. Hebert and S. Prasad, Phys. Lett. B 210 ( 1988 ) 
198. 

[4] K. Cahill and S. Prasad, Phys. Rev. D 40 (1989) 1274. 
[5] G. Mack and E. Pietarinen, Nucl. Phys. B 205 (1982) 141. 
[6] M. Grady, Z. Phys. C 39 (1988) 125. 

[ 7 ] M. Grady, SUNY-Fredonia report SUNYFRED/8802. 
[ 8 ] A. Patrascioiu, E. Seiler, V. Linke and I. Stamatescu, Max- 

Planck-Institut preprint MPI-PAE/PTh 51/88. 
[9] A. Patrascioiu, E. Seiler and I. Stamatescu, Phys. Lett. B 

107 (1981) 364. 
[ 10] I. Stamatescu, U. Wolff and D. Zwanziger, Nucl. Phys. B 

225 [FS9] (1983) 377; 
E. Seiler, I. Stamatescu and D. Zwanziger, Nucl. Phys. B 
239 (1984) 177,201. 

[ 11 ] K. Cahill, S. Prasad and R. Reeder, Phys. Lett. B 149 (1984) 
377; 
K. Cahill and R. Reeder, in: Advances in lattice gauge theory 
(World Scientific, Singapore, 1985 ) p. 424. 

[12] K. Cahill and R. Reeder, Phys. Lett. B 168 (1986) 381; J. 
Stat. Phys. 43 (1986) 1043. 

[ 13 ] K. Cahill, S. Prasad, R. Reeder and B. Richert, Phys. Lett. 
B 181 (1986) 333. 

[ 14] V.N. Gribov, Phys. Scr. T15 (1987) 164; Phys. Lett. B 194 
(1987) 119. 

[ 15 ] K. Cahill, Nucl. Phys. B (Proc. Suppl. ) 9 ( 1989 ) 529. 
[ 16] D. Zwanziger, Nucl. Phys. B 192 ( 1981 ) 259. 
[ 17 ] V.N. Gribov, Nucl. Phys. B 139 ( 1978 ) 1. 
[ 18] K. Cahill and D. Stump, Phys. Rev. D 20 (1979) 2096. 
[ 18 ] R. Kirschner, J. Kripfganz, J. Ranft and A. Schiller, Nucl. 

Phys. B 210 (1982) 567. 
[ 20 ] M. Creutz, private communication. 
[21 ] A. Hasenfratz and P. Hasenfratz, Phys. Lett. B 93 (1980) 

165; 
R. Dashen and D. Gross, Phys. Rev. D 23 ( 1981 ) 2340. 

[22 ] W. Celmaster and R.J. Gonsalves, Phys. Rev. D 20 (1979) 
1420. 

[23] M. Creutz, Phys. Rev. D 23 ( 1981 ) 1815. 

298 


