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Abstract. For a universe of the compact  Robertson- 
Walker cosmology, Gauss's law requires the QCD 
vacuum angle 0 to vanish, taking with it the strong 
CP problem. 

The strong interactions conserve C, P, and T as far 
as we know. But due to the structure of the vacuum, 
the P- and T-violating term E~B'~ occurs in the 
lagrangian of quantum chromodynamics multiplied 
by the arbitrary vacuum angle 0. This conflict be- 
tween experiment and theory is known as the strong 
CP problem [1]. 

The purpose of the present note is to show that 
for a universe of the compact  Robertson-Walker  
cosmology, Gauss's law requires the vacuum angle 0 
to vanish. In this Robertson-Walker cosmology, in 
which k =  + 1, the spatial universe at every moment  
of time is a three-dimensional spherical surface, S 3. 
For this cosmology, and presumably for a class of 
similar cosmologies, Gauss's law solves the strong 
CP problem. However Gauss's law does not prevent 
the quark mass matrix from producing unwanted P 
and T violations. 

It may seem bizarre to suggest that the curvature 
of spacetime on a scale much larger than that of the 
strong interactions could have anything to do with 
the strong CP problem. However the problematic 
term OE~.B ~ is a total divergence; so the nature of - - I  - - i  

the boundary of spacetime is relevant. 
Let us recall the origin of the term OE~B~ in flat 

space. In Dirac's method of quantization, the con- 
straint known as Gauss's law is represented by the 
requirement that the operator ,c 0i .o~ D i F~ - j  annihilate 

1 Supported in part by the U.S. Department of Energy under 
grant DE-FG04-84ER40166 

all physical states [2]. By multiplying this operator 
by a gauge parameter, co,(x), and integrating over 
space, one may conclude that the operator 

Gauss(o)  = ~ d 3 xo~[D'[~ F ~176  (1) 

also annihilates all physical states. This operator 
differs from the generator of the gauge transfor- 
mation associated with o 

Gauge(o)  = ~ d 3 x [ - F~ - co,j ~ (2) 

by the surface term Z = ~ d a i o ,  F ~ This surface term 
is zero for gauge parameters that vanish at spatial 
infinity. Thus physical states are invariant under 
"little" gauge transformations. However, physical 
states are not required by Gauss's law to be in- 
variant under a gauge transformation for which the 
gauge parameter  c%(x) does not vanish at spatial 
infinity. Such "big" gauge transformations can be 
grouped into homotopy  classes labeled by the in- 
tegers. Since even big gauge transformations leave 
the hamiltonian invariant, the vacuum can be cho- 
sen to be a simultaneous eigenstate of both the 
hamiltonian and of a big gauge transformation that 
takes a pure gauge field from the nth homotopy  
class to the n + l s t .  Because gauge transformations 
are implemented by unitary transformations, the ei- 
genvalue of the vacuum is unimodular, exp(i0). The 
phase 0 is the QCD vacuum angle. The action func- 
tional for the 0 vacuum differs from the one for the 
0 = 0  vacuum by an integral over spacetime of a 
term proportional  to OE~B~. 

It is intuitively clear that the surface term Z may 
play a different role in a world without a spatial 
boundary. Let us represent the gravitational field by 
a classical metric field, guy(x), and let h(x) be the 
square-root of the absolute value of the determinant 
of this metric. Then the operator Gauss(o)  appro- 
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priate to this background metric is 

Gauss(co) = 5 d3xhco,[h - 1D~ChF~176 (3) 

in which the sigma or gamma matrix in the quark 
current is suitably modified by the vierbein of the 
metric. The physical states are annihilated by this 
operator for all co. The generator of the gauge trans- 
formation associated with the gauge parameter  co is 

Gauge(co) = ~ d3xh  [ -F~ co,j0,]. (4) 

As in flat space, the two differ by the surface term 
S =  [. daihco, F, ~ But now if the space described by the 
metric g,~ has no spatial boundary, then 2; may 
vanish even if co~ is multivalued. In such worlds 
Gauss's law requires the physical states to be in- 
variant under all gauge transformations. The vacu- 
um angle 0 therefore vanishes, and there is no strong 
CP problem. It will now be shown that this is the 
case for the compact  Robertson-Walker cosmology. 

The sphere S 3 may be parameterized by the an- 
gles 0, qS, and Z which run from 0 to 7z, 0 to rr, and 0 
to 2m In terms of these variables, the metric of the 
sphere is diagonal with elements goo = 1, g+,~= sin 2 0, 
and gzz=sin20sin2qS. The scale factor h is then 
proportional  to sin20 sin qS. Let us first consider the 
gauge group SU 2 an arbitrary element of which may 
be represented in terms of the Pauli matrices as U 
= exp (ico~ or j2).  The map defined by co 
= 2 0  sin~b sin(n)0, o02=20 sinq5 cos(n)(), and co3 
= 2 0  cosq5 from S 3 to S U  2 lies in the nth homotopy  
class*. Because S 3 has no boundary, the surface term 
S would vanish trivially if the gauge parameter  co 
were single-valued. However since the pairs of points 
(~, qS, )0 and (rr, qS; 5() are to be identified, co is multi- 
valued. The surface term 2; consists of three terms. 
The first term is an integral over 0 and q5 of the 

E . difference between h z~% evaluated at )(=2re and at 
Z=0.  This term vanishes because 00 is single-valued 
as a function of Z and because E, like U, is single- 
valued. The second term is an integral over 0 and Z 
of the difference between hE'd, co, evaluated at qS=rr 
and at q5=0. This term vanishes because h = 0  for q5 
= 0  and for q5 = =. The third term is an integral over 
~b and l of the difference between hE'~co, evaluated 
at 0 = =  and at 0=0 .  This term vanishes because h 
= 0  for 0=Tr and for 0=0 .  Thus Z = 0  for all n. 

Let us now consider the case of an arbitrary 
connected compact  Lie group G of which the gener- 
al element U can be represented in terms of the 
generators t, of G as U=exp(icoata). The gauge pa- 
rameter co will be some multivalued function of 0, qS, 
and )( such that the map from S 3 to G is single- 

* At 0=~, U= -1 and h-0. 

valued and lies in some homotopy class. The surface 
term S will again consist of three terms similar to 
those for G = S U  2. Once again the second and third 
terms will vanish because of the metric factor h. The 
first term will vanish if co is single-valued as a func- 
tion of Z, as in the case of S U  2. Since the points 
(0, qS,0) and (0,~b,2rc) are to be identified, the group 
element U must be continuous across the corre- 
sponding 0 - 4 )  plane. This means that after a suit- 
able unitary transformation, the matrices co(0, qS, 0)a t, 
and co(0,~b,2~)at a must differ by a diagonal matrix 
whose eigenvalues are integral multiples of 2rri. By 
continuity these eigenvalues cannot change with 0 
and qS, although the unitary transformation can. 
Thus close to the pole 0 = 0  these eigenvalues must 
still be the same multiples of 2~ri. But here the two 
points (0, qS,0) and (0, q5,2~) can be connected by a 
very short loop around the pole, a loop that does 
not cross the 0-~b plane on which co is multivalued. 
On this loop the matrix coat~ must race from its 
value at Z = 0  to its value at ;(=2r~ forcing its expo- 
nential to gyrate wildly. The map from S 3 to G is 
therefore discontinuous unless co is singlevalued on 
the 0 -  q5 plane, in which case the first term of S also 
vanishes, 

These arguments can no doubt be improved and 
extended to a broader class of CP-free cosmologies. 
They do not apply, however, to the physically irre- 
levant case of the circle because it is doubly con- 
nected and flat. 

Another source of CP violation is the quark mass 
matrix, which may contain pieces that are imaginary, off- 
diagonal, or that contain 75. Gauss's law does not cure 
these sources of CP violation, which are also required to 
be small. However the Higgs sector of the theory is itself 
so arbitrary that the added requirement that the quark 
mass matrix be real, diagonal, and free of 75 seems to 
increase its arbitrariness only marginally. 

The classic solution to the strong CP problem, 
and also to the Higgs CP problem, involves a U(1) 
symmetry broken by instantons and is due to Peccei 
and Quinn [3]. However their solution entails the 
existence of axions [4], which are hypothetical light, 
weakly interacting, pseudoscalar bosons. Axions 
have been searched for without success in K, 7 j, and 
1 c decays and in reactor and beam-dump experi- 
ments. An astrophysical argument (lest axions freeze 
stars [5]) and a cosmological one (lest axions over- 
close the universe [6]), together with the null results 
of these axion searches, seem to limit possible axion 
masses to the range 1.2x 10-SeV=<ma<0.13eV [7]. 
A search of this range has been proposed [8] and 
would be of considerable interest. 

A second possible explanation of the strong CP 
problem, and the Higgs one, is the existence of a 
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mass less  q u a r k  [4].  H o w e v e r  this e x p l a n a t i o n  seems  
to d i sagree  wi th  cu r r en t  a l g e b r a  [4].  

W e  are  the re fo re  faced  wi th  the  fo l lowing  a l te r -  

na t ives :  e i the r  (1) there  are  ax ions  o r  (2) there  is a 
mass less  q u a r k  o r  (3) the  spat ia l  un iverse  is S 3 o r  

s o m e  o t h e r  CP- f ree  space  o r  (4) there  is a n o t h e r  
r e s o l u t i o n  to the s t rong  CP prob l em.  A n u m b e r  of  

r ecen t  c and ida t e s  for o p t i o n  (4) a re  l i s ted in [9].  
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