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Abstract
The action of general relativity with fermions has two independent symme-
tries: general coordinate invariance and local Lorentz invariance. General
coordinate transformations act on coordinates and tensor indices, while local
Lorentz transformations act on Dirac and Lorentz indices, much like a non-
compact internal symmetry.

The internal-symmetry character of local Lorentz invariance suggests that
it might be implemented by tensor gauge fields with their own Yang–Mills
action rather than by the spin connection as in standard formulations. But
because the Lorentz group is noncompact, their Yang–Mills action must be
modified by a neutral vector field whose average value at low temperatures is
timelike. This vector field and the tensor gauge fields are neutral and interact
gravitationally, so they contribute to hot and cold dark matter.

The two independent symmetries of the action are reduced to a single
symmetry of the vacuum, local Lorentz invariance, by the nonzero average
values of the tetrads c k

a . The local Lorentz invariance of general relativity with
fermions can be extended to local U(2, 2) invariance.

If the contracted squares of the covariant derivatives of the tetrads mul-
tiplied by the square of a mass M are added to the action, then in the limit
M2→∞ , the equation of motion of the tensor gauge fields is the vanishing of
the covariant derivatives of the tetrads, which is Cartan’s first equation of
structure. In the same limit, the tensor gauge fields approach the spin
connection.
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1. Introduction

The action of general relativity with fermions has two independent symmetries: general
coordinate invariance and local Lorentz invariance. These symmetries are traditionally
implemented by Cartan’s tetrads c i

a and by the spin connection ωi which is a quartic poly-
nomial in the tetrads and their first derivatives. In this paper, the spin connection is replaced
by tensor gauge fields with their own Yang–Mills action.

General coordinate invariance is the defining symmetry of Einstein’s general relativity. A
general coordinate transformation  ¢x x acts on coordinates x i and on tensor indices i, k but
leaves Dirac indices α, β and Lorentz indices a, b unchanged

y y¢ ¢ = ¢ ¢ =
¶ ¢
¶

a a( ) ( ) ( ) ( ) ( )x x c x
x

x
c x, . 1a

i
i

k a
k

General coordinate invariance is implemented by Cartan’s tetrads c k
a and their derivatives.

Local Lorentz transformations act on Dirac and Lorentz indices but leave coordinates and
tensors unchanged

y y

y w y y

¢ = L

¢ = ¶ + ¢ ¢ = L

¢ = L

a ab b

a
ab

b ab b

( ) ( ( )) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x D x x

D D D

c x x c x . 2

i i i i

i
a

b
a

i
b

Local Lorentz invariance is implemented by the spin connection ωi in standard formulations
[1–7].

Invariance under general coordinate transformations and invariance under local Lorentz
transformations are both exact and independent symmetries of the action of general relativity
with fermions. But while general coordinate transformations (1) act on coordinates and tensor
indices, local Lorentz transformations (2) act on Lorentz and Dirac indices leaving coordi-
nates unchanged. In this respect, local Lorentz invariance is like a noncompact internal
symmetry [8].

These observations motivated an attempt [9] to implement local Lorentz invariance by
means of tensor gauge fields L i

ab , but the focus was so exclusively upon fermions and the spin
connection, that the invariance of the action of the tensor gauge fields was neglected and
repaired belatedly in an erratum [10]. In that erratum, a hermitian matrix h(x) was introduced
that under a local Lorentz transformation Λ(x) transforms as ¢ = L L( ) ( ( )) ( ) ( ( ))†h x D x h x D x in
which D(Λ) is Dirac’s D(1/2,0) ⊕ D(0,1/2) representation of SO(3,1).

In the present paper, local Lorentz invariance is implemented by means of tensor gauge
fields L i

ab and a real vector field Ki in terms of which the matrix h is realized as
bg bg= =h c K Ki ia

a
i

i
a

a. The spin connection w w g g= [ ],i i
ab

a b
1

8
is replaced by a ‘Lorentz

connection’ g g= [ ]L L ,i i
ab

a b
1

8
with field-strength Fik= [∂i+ Li, ∂k+ Lk] and Yang–Mills-

like action

òl
b b= - ( ) ( )†S

m
F hF h g x

1

4
Tr d 3L ik

ik
2 2

4

in which β= iγ0, = ∣ ( )∣g gdet ik , and λ is a coupling constant. The vector field Ki(x) makes
the trace in the action SL invariant under noncompact Lorentz transformations, but the squares
of the time derivatives ( )L i

ab 2 appear in SL with positive signs only if the average value of Ki

is timelike.
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The action of the vector boson Ki is

ò x= - - - - +⎡
⎣

⎤
⎦

( )( ) ( ) ( )S D K D K D K D K K K m g d x
1

4

1

4
4K i k k i

i k k i
i

i2 2 2 4

in which ξ> 0 is a positive coupling constant. The potential energy density x +( )K K mi
i1

4
2 2 2

makes the average value 〈0|Ki(x)|0〉 of Ki(x) timelike at low temperatures.
At low temperatures, T= ξm, the vibrations about 〈0|Ki(x)|0〉 are massless and neutral, and so

would contribute to hot dark matter. But at high temperatures, T? ξm, the field Ki radiates particles
of mass mK= ξm which would contribute to cold dark matter at low temperatures.

The tensor gauge fields L i
ab are neutral and massless and would contribute to hot dark

matter.
Since the tensor gauge fields L i

ab and the vector boson Ki interact with gravitational
strength, they would have decoupled much earlier than the photons, and so would not have
been heated by the annihilations of the quarks and leptons. They would have a present
temperature much colder than the 2.7 K of the CMB, which decoupled when the present
universe was 380 000 years old and had a temperature of about 0.26 eV.

In terms of the connection Li and the gauge fields of the standard model = a aA A tii is
s, the

covariant derivative of a Dirac field ψ is defined in this paper as

y y= ¶ + +( ) ( )D L A 5i i i i

rather than in terms of the spin connection as

y w y= ¶ + +( ) ( )D A 6i i i i

in which w w g g= [ ],i i
ab

a b
1

8
and [1–7]

w = ¶ - ¶ - ¶ - ¶ - ¶ - ¶( ) ( ) ( ) ( )c c c c c c c c c c c . 7i
ab aj

i j
b

j i
b bj

i j
a

j i
a ak b

i
c

k c ck
1
2

1
2

1
2

ℓ
ℓ ℓ

The present formalism has a serious disadvantage: it introduces one vector boson Ki and
six tensor gauge fields L i

ab . On the other hand, it has three advantages:

1. It treats local Lorentz invariance as an internal symmetry and gives it a Yang–Mills
action.

2. It adds to the usual internal-symmetry gauge fields = a aA A tii is
s in the Dirac covariant

derivative y y= ¶ + +( )D L Ai i i i a linear combination of gauge fields
g g= [ ]L L ,i i

ab
a b

1

8
and not a quartic polynomial ωi in the tetrads and their derivatives.

3. At high temperatures, the vector field K radiates massive particles that would contribute
to cold dark matter at low temperatures.

The action SL is discussed in section 2. The matrix h, the vector Ki, and the positive signs
of squares of the time derivatives ( )L i

ab 2 are discussed in section 3. The Dirac action

ò y g y= - ¯ ( )S c D g xd 8D
a

a
i

i
4

in which Di is the covariant derivative (5) is discussed in section 4. The actions SL, SK and SD
are invariant under local Lorentz transformations and under independent general coordinate
transformations.

Although general coordinate invariance and local Lorentz invariance are independent
symmetries of the action, they are not independent symmetries of the ground state of the
Universe because they do not leave invariant the nonzero average values of Cartan’s tetrads
c k

a . Their average values ⟨ ∣ ∣ ⟩c0 0k
a or r( ( ))c xTr i

a reduce the symmetries of the action—
general coordinate invariance and local Lorentz invariance—to a single symmetry of the
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ground state: local Lorentz invariance. Since nonzero average tetrad values are intrinsic to the
theory, this reduction of symmetry is intrinsic rather than spontaneous. It is discussed in
section 5.

Local invariance under the Lorentz group SO(3, 1) is extended to U(2, 2) in section 6.
If tensor gauge fields do gauge SO(3,1) and if all invariant terms of dimension (mass)4 or

less occur in the action (which is not obvious in a theory of gravity), then the total action
would include the contracted squares

ò= - ( )S M D c D c g xd 9C i k
a i

a
k2 4

of the covariant derivatives of the tetrads

= ¶ + - G ( )D c c L c c . 10i k
a

i k
a

i b
a

k
b

ki
ℓ

ℓ
a

The factor M2 is required because tetrads are dimensionless. The linear combination
- GL c ci b

a
k

b
ki

ℓ
ℓ

a of the tensor gauge field and the Levi-Civita connection acquires a mass of
orderM. In the limitM→∞ the equation of motion of the tensor gauge fields L i

ab arises from
the term SC and is =D c 0i k

a which is Cartan’s first equation of structure. In the same limit,
the tensor gauge fields approach the spin connection as described in section 7.

2. Action of tensor gauge bosons

The action (3) proposed for the tensor gauge fields is

òl
b b= - ( ) ( )†S

m
F h F h g x

1

4
Tr d 11L ik

ik
2 2

4

in which the field strength Fik is

= ¶ + ¶ +[ ] ( )F L L, , 12ik i i k k

the matrix of tensor gauge fields Li is

g g= [ ] ( )L L , , 13i i
ab

a b
1
8

bg=h i c Ka
a

i
i is a 4× 4 hermitian matrix, Ki is a real vector field, and λ is a coupling

constant.
The action (11) is real because

b b b b b b= =*( ) ( ) ( ) ( )† † †F hF h h F hF F hF hTr Tr Tr . 14ik
ik ik

ik ik
ik

The gamma matrices

g s
s

g b g bg

g s
s

b g

= - = = =

= -
-

= - =
-

⎛
⎝

⎞
⎠

( ) ( ) ( )
( ) ( ) ( )

i i i

i i

0 1
1 0

, 0 1
1 0

, 1 0
0 1

0
0

, 0
0

, 1 0
0 1

15i
i

i

0 0 0

5

asatisfy {γ a, γ b}= 2η abI. The commutators [γa, γb] in g g= - [ ]L L ,i i
ab

a b
1

8
are for spatial a,

b, c= 1, 2, 3

g g s g g s g= = -[ ] [ ] ( )i I, 2 and , 2 . 16a b abc
c

a
a

0
5

The gauge fields associated with rotations and boosts are
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º º ( )r bL Land , 17i
a

abc i
bc

i
a

i
a1

2
0

and the matrix of gauge fields Li is

s sg= - ⋅ - ⋅ ( )r bL i I
1

2

1

2
. 18i i i

5

The field strength (12) is then

s

sg

= ¶ + ¶ + =- ¶ - ¶ + ´ - ´ ⋅

- ¶ - ¶ + ´ + ´ ⋅

[ ] [ ( )]

[ ( )] ( )

r r r r b b

b b r b b r

F L L i I,
1

2

. 19

ik i i k k i k k i i k i k

i k k i i k i k
1
2

5

Under a local Lorentz transformation D=D(Λ(x)), these fields transform as

g g

b b b b
y y

¢ = L L - ¶

¶ + ¢ = ¶ +
¢ =
¢ =
¢ =
¢ =

-

-

-

- -

( [ ])

( )

( )
( )

†

†

L L D D

L D L D

F D F D

h D h D
h D h D

D

Tr ,

20

i
ab

c
a

d
b

i
cd

i
a b

i i i i

ik ik

1
2

1

1

1

1 1

and so the action density sL of the action SL (11) is invariant

b b b b b b¢ = ¢ ¢ = = =¢ ¢ - - - -

( )
( ) ( ) ( )† † † † † † †

21
s F h F h D F D D hD DF D D h D F hF h sTr Tr TrL ik

ik
ik ik ik

ik
L

1 1 1 1

under local Lorentz transformations (2) as well as under general coordinate transformations (1).
The squares of the time derivatives ( )L i

ab 2 and ( )L i
a0 2 of the gauge fields must appear with

a positive sign in the action SL (11) if the gauge-field action is to be bounded below. They will
appear with a positive sign at low temperatures if the vector boson Ki in the matrix

bg=h c Ki a
a

i
i has an average value 〈0|Ki|0〉=K0i in the low-temperature ground state that is

timelike, K0i K0
i ;−m2< 0. The matrix h, the vector Ki, and the signs of the time derivatives

( )L i
ab 2 and ( )L i

a0 2 are discussed in section 3.
The tensor gauge fields L i

ab have spin 2 (not 3) because they are antisymmetric in a and b.
An explicit formula for the matrix D(Λ) is given in appendix A along with derivations of

the identities

b b b b= = ( )† †D D D Dand . 22

These identities (22) imply that the action SL with h replaced by β, i.e the trace
b b( )†F FTr ik

ik , is invariant under local Lorentz transformations. But the choice h→ β gives an
action in which the squares of the time derivatives of the tensor gauge fields that gauge boosts
and those that gauge rotations occur with opposite signs. So the trace (11) which uses the
matrix h= iβγ aKa may be the only viable choice.

With the abbreviations

= ¶ - ¶ + ´ - ´
= ¶ - ¶ + ´ + ´

( )
( ) ( )

R r r r r b b
B b b r b b r , 23

ik i k k i i k i k

ik i k k i i k i k

the field strength Fik is s s g= - ⋅ - ⋅R BF i Iik ik ik
1

2

1

2
5, and the action SL is

ò s s s s
l

g g b b=- ⋅ + ⋅ ⋅ - ⋅[( ) ( ) ] ( )R B R BS
m

I h I h g x
1

16
Tr i i d . 24L ik ik

ik ik
2 2

5 5 4
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Tensor gauge fields L i
ab possess at least two other actions that are invariant under local

Lorentz transformations and general coordinate transformations. One is succinct and linear

ò= ( )S M F c c g xd 25E E ik
ab

a
i

b
k2 4

in the coefficients F ik
ab of the field strength

g g= = ¶ - ¶ +[ ] [ ] ( )F F L L L L, , . 26ik ik
ab

a b i k k i i k

These coefficients

= ¶ - ¶ + -F L L L L L Lik
ab

i k
ab

k i
ab

i
bc

ck
a

i
ac

c k
b

resemble Riemann’s curvature tensor

= ¶ G - ¶ G + G G - G G ( )R . 27iℓn
k

ℓ in
k

n iℓ
k

mℓ
k

in
m

mn
k

iℓ
m

But the action SE (25) does not lead to second-order differential equations for the gauge
fields L i

ab .
A third invariant action is based upon the scalar

= ¶ - ¶ + - ¶ - ¶ + - ( )( )( ) 28F F L L L L L L L L L L L L .ik
ab

ab
ik

i k
ab

k i
ab

i
bc

ck
a

i
ac

c k
b i

ab
k k

ab
i

bd
i

a
dk

ad
i

b
d k

It is hermitian and invariant under general coordinate transformations and local Lorentz
transformations, but the squares of its time derivatives occur with opposite signs.

3. The matrix h and the vector K

The action SL of the proposed tensor gauge fields will be invariant under local Lorentz
transformations (20) if the matrix h which appears in the trace (11) transforms as

¢ = - - ( )†h D h D 291 1

where D=D(Λ(x)), D†βD= β and DβD†= β .
The simplest choice is the hermitian matrix

bg= ( )h i c K 30a
a

i
i

in which Ki is a real vector transforming as

¢ ¢ =
¶
¶ ¢

( ) ( ) ( )K x
x

x
K x 31i

k

i k

under general coordinate transformations. Its action SK (4) is simpler than it looks since

- = ¶ - ¶ ( )D K D K K K . 32i k k i i k k i

Under a Lorentz transformation Λ, Dirac’s gamma matrices transform as a 4-vector

g g
g g

L L = L
L L = L

-

-

( ) ( )
( ) ( ) ( )

D D

D D 33

a
b
a b

a
b

a b

1

1

where L = L-
b

a
b

a1 . And since the matrix D(Λ) leaves β invariant D−1†(Λ) β= βD(Λ) as
seen earlier (22), the matrices βγ a also transform as a 4-vector

bg bg
bg bg

L L = L
L L = L

- -( ) ( )
( ) ( ) ( )

†

†

D D

D D . 34

a
b
a b

a
b

a b

1 1
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So Λ changes ¢h to

bg bg bg= ¢ ¢ = L = =¢ - - - - ( )† †h i c K i c K iD D c K D h D 35a
a

i
i

a
a

b
b

i
i

b
b

i
i

1 1 1 1

which satisfies (20) as does βhβ since

b b b b b b¢ = =- -( ) ( )† †h D hD D h D . 361 1

The squares of the time derivatives L i
ab

of the gauge fields must appear with a positive sign
in the action (3) if the gauge-field action is to be bounded below. They will appear with a
positive sign at low temperatures if the vector boson Ki in the matrix bg=h c Ki a

a
i

i has an
average value K0i= 〈0|Ki|0〉 in the low-temperature vacuum that is timelike,
K0i K

0 i;−m2< 0. At low temperatures, the average value K0i is made timelike by the
second term - +( )K K mi

i1

4
2 2 in its action SK (4) which due to antisymmetry (32) may be

written in the simpler form

ò x= - ¶ - ¶ ¶ - ¶ - +⎡
⎣

⎤
⎦

( )( ) ( ) ( )S K K K K K K m g x
1

4

1

4
d . 37K i j k i

i j k i
i

i2 2 2 4

At low temperatures and presumably in the rest frame of the CMB, the vector Ki has the
average vacuum value d= =⟨ ∣ ∣ ⟩K K m0 0i i i

0 0, and the average value of the matrix h (30) is

bg bg= = = - ( )h c K c K mIi i . 38a
a

i
i0

0
0

0
00

Then in the rest frame of the CMB and apart from the fluctuations = -k K Ki i i
0, the action

SL (24) is

ò

ò

s s s s
l

g g

l

=- ⋅ + ⋅ ⋅ - ⋅

= - ⋅ + ⋅

[( )( )]

( ) ( )

R B R B

R R B B

S I I g x

g x

1

16
Tr i i d

1

4
d 39

L ik ik
ik ik

ik
ik

ik
ik

2
5 5 4

2
4

in which the squares of the time derivatives ( )rk
2 and ( )bk

2 appear with positive signs as
promised. So the action SL is bounded below in the rest frame of the CMB.

At low temperatures, the vector boson Ki fluctuates about its average value,
Ki(x)= K0i+ ki(x). The fluctuations ki(x) are those of a massless vector field with k0(x)= 0 as
discussed in appendix C. The six gauge fields L i

ab remain massless despite the nonzero
average value Ki

0 of the vector boson Ki.
The ground state |0, v〉 of a Lorentz frame moving at velocity v relative to the CMB is

related to the ground state of the CMB by a unitary Lorentz transformation |0, v〉=Uv|0〉 that
represents matched (62) Lorentz and general-coordinate transformations. The action is
invariant under Lorentz and general-coordinate transformations

=- ( )U S U S . 40v vL L
1

So the average value of the action in the state |0, v〉 is the same as in the state |0〉 in which the
CMB is at rest

= =-⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩ ( )v vS U S U S0, 0, 0 0 0 0 . 41v vL L L
1

Thus the action is bounded below in all Lorentz frames.
The matrix h takes a simpler form in two-component notation as discussed in appendix D.
It may be useful here to distinguish different kinds of symmetry. One kind is an exact

symmetry of the action and of the vacuum, like that of the group SUc(3) of QCD.
A second kind is a symmetry of the action but not of the vacuum, like that of

SUℓ(2)⊗U(1)Y in which the average value of a component of the Higgs field in the low-
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temperature vacuum makes the W and Z bosons massive. Their masses make their interac-
tions of short range and therefore weak.

A third kind is symmetries of the action that are intrinsically reduced by the ground state of
the actual universe. As described in section 5, the average values of the tetrads

r=( ) ( ( ))c x c xTri
a

i
a

0 in the ground state of the late, low-temperature universe reduce the two
independent symmetries of general coordinate and local Lorentz invariance to a single exact
symmetry of the vacuum—local Lorentz invariance. Every local Lorentz transformation
L ( )xb

a must be accompanied by a specific general coordinate transformation (66)

¶ ¢
¶

= L( ) ( ) ( ) ( )x

x
c x x c x 42

i

k a
i

b
a

k
b

in order to preserve the average values of the tetrads.
In the theory sketched in this paper, the average value of the vector boson Ki in the present

low-temperature universe and in the rest frame of the CMB, d=⟨ ∣ ∣ ⟩K m0 0i i
0, gives the action

SL (3, 24) of the six gauge fields L i
ab the approximate and simpler form (39). The six gauge

fields L i
ab remain massless, and local Lorentz invariance remains exact—apart from 〈0|Ki|0〉,

the CMB, and the matter and energy of the actual universe.

4. Dirac action

The explicitly hermitian Dirac action is

ò y g y y g y= - +[ ¯ ( ¯ ) ] ( )†S c D c D g x
1

2
d 43D

a
a

i
i

a
a

i
i

4

in which the covariant derivative Diψ is

y g g y= ¶ +( )[ ] ( )D L , . 44i i i
ab

a b
1
8

To avoid clutter, I am using a single Dirac field ψ and am suppressing the gauge bosons aAi of
SUc(3)× SUℓ(2)×U(1). To include them, one would replace the single Dirac field ψ by a
vector Ψ whose components Ψα would be the 6 leptons and 18 quark fields. One would add
the 12 gauge bosons aAi of SUc(3)× SUℓ(2)×U(1) and their actions. Then the covariant
derivative of the 96-component Dirac field Ψ would be

g gY = ¶ + + Ya a( )[ ] ( )D L A t, 45i i i
ab

a b i
1
8

in which the tαʼs are the generators of the Lie algebras of SUc(3), SUℓ(2) and ( )U 1 Y .
The simplest choice for ȳ is Dirac’s choice y y b=¯ †

y b g y= - ( )† c D 46D b
i b

i

in which the real 4× 4 hermitian symmetric matrix β= iγ0 obeys D†(Λ) βD(Λ)= β. The
resulting Dirac action (8) is then invariant under local Lorentz and general coordinate
transformations.

Under a local Lorentz transformation D=D(Λ(x)), the Dirac field ψ, its covariant deri-
vative Diψ and the tetrads ca

i transform as
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y y
y y b y b y b
y y

¢ =
¢ = ¢ = =
¢ =

¢ = L

-¯ ( )
( )

( ) ( )

† † † †
D

D D

D D D

c c 47
i i

a
i

a
b

b
i

1

while g g g= L = L- -D Da
b
a b

b
a b1 1 . Thus the action density (8) is invariant under local

Lorentz transformations

y b g y y b g y y b g y y b g y= = L = L L = =¢ ¢ - ( )( )† † † † †  48c D D D c D c D c DD
a

a
i

i
a

c
i

a
c

i
b

b
a

a
c

c
i

i
b

b
i

i D
1

as well as under general coordinate transformations.
The explicitly hermitian action density is

sy b g y y b g y y g y y s y= - ¶ - ¶ + ⋅ - -
( )

( ) ( )† † † †
49

rc c c I c r c b .Dh a
i a

i
a

i a
i i

i s
i

i
s

jsk j
i

i
s k1

2

1

2 0
5 1

2

as shown in appendix E.
Although the current that generates the rotational field ri

s is

y s g y= -( ) ( )†j c c , 50r
is i s

s
i1

2 0
5

the current that generates the boost field bi
s has no time component

y s y= - ( )†j c . 51b
is

jsk j
i k1

2

So unless the spatial tetrads are nondiagonal so that ¹c 0j
0 for j= 1, 2 or 3, the time

components of the boost bosons b s
0 do not occur in the Dirac action, and do not generate

Coulomb potentials.
These comments apply also to the gauge fields of groups larger than the Lorentz group:

unless the spatial tetrads are nondiagonal, ¹c 0a
0 for a> 0, the time components of the

gauge bosons of the generators of the noncompact directions do not appear in the Dirac action
and do not generate Coulomb potentials.

In the static limit, the exchange of the three massless tensor gauge fields ri that gauge
rotations would imply that two macroscopic bodies of F and ¢F fermions separated by a
distance r would contribute to the energy a static Coulomb potential

p
=

¢( ) ( )K r
FF f

r

3

4
. 52L

2

This potential is positive and repulsive (between fermions and between antifermions). It
violates the weak equivalence principle because it depends upon the number F of fermions as
F= 3B+ L and not upon their masses.

The potential KL(r) changes Newton’s potential to

a= -
¢

+( ) ( ) ( )K r G
mm

r
1 53NL

in which the repulsive coupling strength α is

a
l

p
l

p
= -

¢
¢
= -

¢
¢

( )FF

Gmm

FF m

mm

3

4

3

4
. 54

2
P
2 2

This force would increase the need for dark matter and decrease the need for dark energy.
Couplings α∼ 1 are of gravitational strength.

Experiments [11–34] put no upper limits on the masses of tensor gauge fields and no lower
limits on their coupling λ.

J. Phys. G: Nucl. Part. Phys. 51 (2024) 055202 K Cahill

9



5. Intrinsic reduction of symmetry

When quantizing a gauge theory, one picks a gauge. For general relativity in flat space, the usual
gauge choice is to set the average value of the metric gik(x) equal to the Minkowski metric η

h= =

-⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⟨ ∣ ( )∣ ⟩ ( )g x0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. 55ik ik

The average vacuum value of the metric is then quadratic in the average values of Cartan’s
tetrads

h h= =⟨ ∣ ( )∣ ⟩ ⟨ ∣ ( ) ( )∣ ⟩ ( )g x c x c x0 0 0 0 . 56ik i
a

ab k
b

ik

A further gauge choice of Lorentz frame sets the average vacuum values of the tetrads equal
to Kronecker deltas

d=⟨ ∣ ( )∣ ⟩ ( )c x0 0 . 57i
a

i
a

The independent symmetry transformations of general coordinate invariance (1)

¢ ¢ =
¶
¶ ¢

( ) ( ) ( )c x
x

x
c x 58i

b
k

i k
b

and local Lorentz invariance (2)

¢ = L( ) ( ) ( ) ( )c x x c x 59i
a

b
a

i
b

map a tetrad ( )c xk
b to

¢ ¢ = L
¶
¶ ¢

( ) ( ) ( ) ( )c x x
x

x
c x 60i

a
b

a
k

i k
b

So if the average vacuum values (57) of the tetrads d=⟨ ∣ ( )∣ ⟩c x0 0i
a

i
a are to be invariant,

then

d dL
¶
¶ ¢

= L
¶
¶ ¢

=( ) ( ) ( )x
x

x
x

x

x
. 61b

a
k

i k
b

k
a

k

i i
a

By multiplying this last equation by ¶ ¢ ¶x xi ℓ, we see that the tetrad values d=⟨ ∣ ( )∣ ⟩c x0 0i
a

i
a

will be unchanged only if the general coordinate transformation  ¢x x and the local Lorentz
transformation L ( )xℓ

a

¶ ¢
¶

= L
¶
¶ ¢

= L-( ) ⟺ ( ) ( )x

x
x

x

x
x 62

a

ℓ ℓ
a

k

i i
k1

are the same. In that case, we have

dL
¶
¶ ¢

= L L =- ( ) ( )x

x
x 63k

a
k

i k
a

i
k

i
a1

which maintains the average values of the tetrads in the vacuum

d d¢ = L
¶
¶

= L
¶
¶

= L L =¢
¢ ¢

-⟨ | ( )| ⟩ ( ) ⟨ | ( )| ⟩ ( ) ( ) ( ) ( )c x x
x

x
c x x

x

x
x x0 0 0 0 . 64i

a
b

a
k

i k
b

b
a

k

i k
b

k
a

i
k

i
a1

In a universe described by a density operator ρ, the average values of the tetrads are traces

r=( ) ( ( )) ( )c x c xTr . 65i
a

i
a
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By using the tetrad identity d=c ca
k

i
a

i
k, one may show that the joint transformations (60)

preserve the average values (65) of the tetrads if the general coordinate transformation  ¢x x
is related to the local Lorentz transformation Λ(x) by two tetrads

¶ ¢
¶

= L( ) ( ) ( ) ( )x

x
c x x c x . 66

i

k a
i

b
a

k
b

The nonzero average values of the tetrads reduce the two symmetries of the action to a
single symmetry of the ground state of the Universe: local Lorentz invariance. This reduction
of symmetry is intrinsic rather than spontaneous because tetrads intrinsically have nonzero
average values r( ( ))c xTr i

a .
The ideas of this section are independent of the existence of the tensor gauge fields

proposed in this paper.

6. Is the gauge group U(2, 2)?

So far we have been assuming that the gauge group of the Dirac field is the Lorentz group
which acts on the Dirac field as the direct sum

L = L Å( ) ( ) ( ) ( )( ) ( )D D D a . 671 2,0 0,1 2

Is this a hint of a larger symmetry? These 4× 4 matrices D(Λ)=D(Λ(x)) leave β= iγ0

invariant

b b b bL L = L L =( ) ) ( ) ( ) ( )† ( †D D D Dand . 68

as noted earlier (22) and transform Dirac’s gamma matrices as a 4-vector

bg bgL L = L( ) ( ) ( )†D D 69a
b

a b

as noted earlier (33 and 34).
The gauge group of the Dirac field may be the group of all 4× 4 complex matrices U that

leave β invariant

b b=( ) ) ( )† (D U D U . 70

This group has 16 generators and is known as U(2,2) ([35]) as one may see by rotating all four
of the matrices of this equation of β invariance (70) from the β= iγ0 direction to the γ5

direction. This rotation shows that the group must leave γ5 invariant

g g¢ ¢ =( ) ) ( )† (D U D U 715 5

which is the defining equation of U(2,2).
The 4× 4 direct-sum matrices D(Λ) (67) leave β invariant (68) and so form a subgroup of

U(2, 2).
To implement U(2, 2) gauge symmetry, we’ll need to extend the 6 generators

g g= - [ ] i ,ab a b1

4
and 6 gauge fields L i

ab to 16 generators GA and 16 gauge fields L i
A so that

b b

y y

y y

y y

=

=
¢ =

= ¶ +

¢ =

-

⎛
⎝

⎞
⎠

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )

†D U G D U U G

D U G D U U G

D U

D L G

D D U D

1

2
i

72

A
B

A B

A
B

A B

i i i
A

A

i i

1

D

D
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in which ( )U B
AD is the 16× 16 matrix that represents U in the adjoint representation of

U(2, 2). The Dirac action will be invariant under these local U(2, 2) transformations (72) if
Cartan’s tetrads are also extended from four 4-vectors to 16 4-vectors transforming as

¢ = ( )e U e 73i
A

B
A

i
B

The metric gik must be invariant under U(2, 2)

= = ¢ ¢ = ¢ ( )g e e e e g . 74ik i
A

Ak i
A

Ak ik

We have seen (73) that ¢ =e U ei
A

B
A

i
B , but we can choose how eAi transforms. If we choose

¢ = ( )e F e 75A k A
C

Ck

then to keep

= = ¢ ¢ = ( )g e e e e e F e U 76ik i
A

fk i
f

fk i
h

C
A

Bk A
B

we need

d= =-( ) ( )U F F Uor . 77B
A

A
C

B
C

B
A

B
A1

for then we’d have

d= = ¢ ¢ = = = = ( )g e e e e U e F e e e e e g . 78ik i
A

Ak i
A

Ak B
A

i
B

A
C

Ck i
B

B
C

Ck i
C

Ck ik

The real Lie algebras su(2,2) and sl(4,R) are not isomorphic, but over the complex
numbers they both belong to A3 in the Cartan-Weyl classification, so their complexifications
are isomorphic [36]. It therefore may make sense to consider the possibility that GL(4,R) or
GL(4,C) is the gauge group of the Dirac field.

7. Cartan’s first equation of structure

If we add all invariant terms of dimension (mass)4 or less to the action (which is by no means
required in a non-renormalizable theory of gravity), then the covariant derivatives (10) of the
tetrads

= ¶ + - G ( )D c c L c c 79i k
a

i k
a

i b
a

k
b

ki
ℓ

ℓ
a

would appear in the action squared and contracted

ò= - ( )S M D c D c g xd 80C i k
a i

a
k2 4

the coefficient M2 being required because tetrads are dimensionless.
If the mass M in the action SC is huge, say of the order of the Planck mass MP, then the

equation of motion of the tensor gauge fields would be approximately the condition that SC be
stationary

ò
ò

d d d

d

=- +

=- =

[( ) ]

( ) ( )

S M D c D c D c D c g x

M L c D c g x

d

2 d 0 81

C i k
a i

a
k

i k
a i

a
k

i b
a

k
b i

a
k

2 4

2 4

because the other terms in the action that contain the fields Li b
a —namely the action terms SD,

SL and SK (4, 8 and 11)—lack the huge coefficient M2.
Thus in the limit M2→∞ , the equation of motion of the tensor gauge fields is

= = ¶ + - G ( )D c c L c c0 82i k
a

i k
a

i b
a

k
b

ki
ℓ

ℓ
a
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which is Cartan’s first equation of structure usually derived from the tetrad postulate or from
the assumption that the torsion vanishes. Multiplying it by c ck, we find that in the M2→∞
limit, the tensor gauge fields approach the spin connection

wG + ¶ = ( )L c c c c . 83i
ac

ki
ℓ

ℓ
a ck

k
a

i
ck

i
ac

8. Conclusions

The action of general relativity with fermions has two independent symmetries: invariance
under general coordinate transformations and invariance under local Lorentz transformations.
The action of local Lorentz transformations on Dirac and Lorentz indices is similar to the
action of noncompact internal-symmetry transformations on Lie-group indices.

The internal-symmetry character of local Lorentz invariance suggests that it might be
implemented not by the spin connection but by tensor gauge fields L i

ab with their own Yang–
Mills action. But because the Lorentz group is noncompact, their Yang–Mills action must be
modified by a neutral vector field Ki(x) whose average value at low temperatures is timelike.
This vector boson is massless at low temperatures. The vector gauge fields L i

ab are massless at
all temperatures.

The particles of the neutral, gravitationally interacting and massless fields L i
ab and Ki

would contribute to the hot dark matter of the Universe. The massive particles radiated by the
vector field K at high temperatures would contribute at lower temperatures to cold dark
matter.

The nonzero average values of the tetrads reduce the spacetime symmetries of the vacuum
to local Lorentz invariance which can be extended to local U(2,2) invariance.

If the contracted squares of the covariant derivatives of the tetrads multiplied by the square
of a mass M are added to the action, then in the limit M2→∞ , the equation of motion of the
tensor gauge fields is the vanishing of the covariant derivatives of the tetrads, which is
Cartan’s first equation of structure. In the same limit, the tensor gauge fields approach the spin
connection.
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Appendix A. The matrix D(Λ)

The matrix D(Λ(θ, λ)) is

q l q l
q l

L = =
s

s

- ⋅

⋅*⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

/

/
( ( )) ( )

( )
( )

( )

( )D
D

D
e

e
,

, 0
0 ,

0
0

A1
z

z

1 2,0

0,1 2

in which l q= +( )z i1

2
([37]). So

b b= = = =
s

s

s

s

s

s

- ⋅

⋅

- ⋅

⋅

⋅

- ⋅
-

* *

*
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )† A2D
e

e
e

e
e

e
D

0
0

0 1
1 0

0
0

0 1
1 0

0
0

z

z

z

z

z

z
1

and

b b= = = =
s

s

s

s
s

s
-

⋅

- ⋅

- ⋅

⋅

- ⋅

⋅*

*

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )† A3D
e

e
e

e
e

e
D0 1

1 0
0

0
0

0
0

0
0 1
1 0

z

z

z

z

z

z
1

as noted earlier (22).

Appendix B. Explicit form of SL in frame of earth

The Solar System moves at v= 368± 2 km s−1 relative to the CMB. So in the Lorentz frame
of the Earth, the average value of Ki is = = - -⟨ ∣ ∣ ⟩ ( )vK v K v m v0, 0, 1, 1v

i i
0

2 . The
average value of the matrix bg=h c Ki a

a
i

i is then

s g
=

-

-
⟨ ∣ ∣ ⟩ · ( )v

E h E m
I

v
0, 0,

1
. B1

5

2

Since βσ · vγ5β=−σ · vγ5, the average value of βhβ is

s
b b

g
= -

+

-
⟨ ∣ ∣ ⟩ · ( )v

E h E m
I

v
0, 0,

1
. B2

5

2

So at low temperatures and apart from the fluctuations ki(x), the action SL (24) is

ò
ò s s s s

s s
s

s s s

l
g g b b

l
g

g
g g

=- ⋅ + ⋅ ⋅ - ⋅

= ⋅ + ⋅
⋅ -
-

⋅ - ⋅ ⋅ +⎡
⎣⎢

⎤
⎦⎥ ( )

[( ) ( ) ]

( ) ( )( )
B3

R B R B

R B
v

R B v

S
m

I i h I i h g x

I i
I

v
I i I g x

1
16

Tr d

1
16

Tr
1

d .

L ik ik
ik ik

ik ik
ik ik

2 2
5 5 4

2
5

5

2
5 5 4

Since v; 10−3, it is useful to separate terms according to the number of powers of v

ò s s s s
l

g g=- ⋅ + ⋅ ⋅ - ⋅
-

[( )( )] ( )R B R BS I i I i
g x

v

1

16
Tr

d

1
B4L ik ik

ik ik
2

5 5
4

2

ò s s s s s
l

g g g- ⋅ + ⋅ ⋅ - ⋅ ⋅[( )( ) ] ( )R B R B vI i I i g x
1

16
Tr d B5ik ik

ik ik
2

5 5 5 4

ò s s s s s
l

g g g+ ⋅ + ⋅ ⋅ ⋅ - ⋅[( ) ( )] ( )R B v R BI i I i g x
1

16
Tr d B6ik ik

ik ik
2

5 5 5 4

ò s s s s s s
l

g g g g+ ⋅ + ⋅ ⋅ ⋅ - ⋅ ⋅[( ) ( ) ] ( )R B v R B vI i I i
1

16
Tr B7ik ik

ik ik
2

5 5 5 5

in which the first integral contains terms of order zero and two in v.
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Terms with an odd number of γ5ʼs cancel. The first term (B4) is thus

òl
= - +

-
( · · ) ( )R R B BI

g x

v

1

4

d

1
. B8ik

ik
ik

ik
1 2

4

2

The second (B5) and third (B6) integrals involve a commutator

ò

ò ò

s s s s s

s s s

l
g g g

l l

+ = ⋅ - ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ ⋅ = - ´ ⋅

{[( ) ( )] }

{[ ] }
( )

R B R B v

R B v R B v

I I I i I i g x

i
I g x g x

1

16
Tr , d

8
Tr , d

1
d .

B9

ik ik
ik ik

ik
ik

ik
ik

2 3 2
5 5 5 4

2
4

2
4

The fourth term (B7) is quadratic in v

ò

ò

ò

s s s s s s

s s ss ss ss

l
g g g g

l

l

= ⋅ + ⋅ ⋅ ⋅ - ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ - ⋅ ⋅ ⋅ ⋅ - ⋅ ⋅

[( ) ( ) ]

[ ]

[ ]
( )

R B v R B v

R v R vB v B v

R vR v R R v v B vB v B B v v

I I I g x

g x

g x

1

16
Tr i i d

1

16
Tr d .

1

4
2 2 d .

B10

ik ik
ik ik

ik
ik

ik
ik

ik
ik

ik
ik

ik
ik

ik
ik

4 2
5 5 5 5 4

2
4

2
4

The action SL in the frame of the Earth is the sum

= + + + ( )S I I I I . B11L 1 2 3 4

Appendix C. The vector boson Ki

At high temperatures, the Lagrange density

x x x= - ¶ - ¶ ¶ - ¶ - - -( )( ) ( )L K K K K m m K K K K K K C1K i j j i
i j j i

i
i

i
i

j
j1

4
1
4

2 4 1
2

2 2 1
4

2

of the action SK (37) describes a spin-one vector boson Ki that of mass ξm. The particles of
the boson Ki would have contributed to the cold dark matter of the universe at temperatures
less than ξm.

At the low temperatures of the present universe, the same Lagrange density describes a
vector boson Ki whose average value 〈0|Ki(x)|0〉 is timelike; in some Lorentz frame, pre-
sumably the rest frame of the CMB, the vector d= +( ) ( )K x m k xi i i

0 has average values
〈0|K0(x)|0〉=m and 〈0|k i(x)|0〉= 0 which make 〈0|Ki(x)|0〉 timelike. Its small fluctuations
k i(x) are those of a massless vector k(x) described by the Lagrange density

x x x=- ¶ - ¶ ¶ - ¶ - - - + - - + ( )( )( ) ( ( ) ) ( ( ) ) C2k kL k k k k m m m k m kk i j j i
i j j i1

4

1

4
2 4 1

2
2 2 2 0 2 1

4
2 2 0 2 2

or

x x

x x x

=- ¶ - ¶ ¶ - ¶ - - - - -

- + + + - + + + +

( )

( )( ) ( )

( ) ( ) ( )
C3

k

k k

L k k k k m m m mk k

m mk k m m k m k mk k

2

2 4 6 4 .

k i j j i
i j j i1

4

1

4
2 4 1

2
2 2 2 2 0 02

1

4
2 2 2 1

2
2 2 2 0 02 1

4
2 4 3 0 2 02 03 04

These massless particles would contribute hot dark matter to the present universe.
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Combining terms, we get

x x x x x

x x x x x x x x x

=- ¶ - ¶ ¶ - ¶ - + - + -

- + + - + - - + -

( )

( )( )

( )
C4

k k k k k

L k k k k m m m m k m k

m m m k m k m k m k k k

k i j j i
i j j i1

4

1

4
2 4 1

2
2 4 1

4
2 4 2 3 0 3 2 0

1

2
2 2 2 1

2
2 2 2 1

2
2 2 02 3

2
2 2 02 2 2 0 2 03 1

4
2 2 2 1

2
2 2 02 1

4
2 04

or

x x x x x x= - ¶ - ¶ ¶ - ¶ - + - - + - ( )( )( ) ( ) C5k k kL k k k k m k m k mk k k .k i j j i
i j j i1

4
2 2 02 2 2 0 2 03 1

4
2 2 2 1

2
2 2 02 1

4
2 04

The quadratic part of Lk is

x= - ¶ - ¶ ¶ - ¶ -( )( ) ( )L k k k k m k . C6k i j j i
i j j i

2
1
4

2 2 02

The linear Euler–Lagrange equations for k i(x) are

x d¶ ¶ - ¶ = -( ) ( )k k m k2 C7j
j i i j i2 2 0

0

or

x+  = -· ( )kk m k2 C80 2 2 0
and

- + -  +  =̈ ( · ) ( )k k kk 0. C90
One solution is −!k0= 2m2k0, ∇ · k= 0, =k 00 , and ∂j∂

jk= 0.

Appendix D. Two-component formalism

Dirac’s formalism is economical, but the two-component formalism is better suited to a
discussion of a new interpretation of the matrix h.

Since the Dirac–Lorentz matrix (A1) is block diagonal

q l q l
q l

= º
s

s

- ⋅

⋅*⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

/

/
( ) ( )

( )
( )

( )

( )D
D

D
e

e
D

D
,

, 0
0 ,

0
0

0
0

, D1
z

z
r

1 2,0

0,1 2
ℓ

the matrix h

= ⎛
⎝

⎞
⎠

( )h
h

h
0

0
D2ℓ

r

and its transformation law ¢ = - -†h D h D1 1 (29) are block diagonal

¢
¢

=
- -

- -
⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟ ( )

†

†
h

h

D h D

D h D

0
0

0

0
. D3ℓ

r

ℓ ℓ ℓ

r r r

1 1

1 1

The matrix βhβ is just h with left and right interchanged

b b = ⎛
⎝

⎞
⎠

( )h
h

h
0

0
. D4r

ℓ

The transformation law y y¢ = D of a Dirac field

y = ( ) ( )ℓ
r

D5
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is

y¢ = ¢
¢

=⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )ℓ
r

D ℓ
D r

. D6ℓ

r

So the combinations ℓ†hℓℓ and r†hrr are invariant

¢ = =

¢ = =

- -

- -

( )
( ) ( )

† † † † †

† † † † †

ℓ h ℓ ℓ D D h D D ℓ ℓ h ℓ

r h r r D D h D D r r h r D7

ℓ ℓ ℓ ℓ ℓ ℓ ℓ

r r r r r r r

1 1

1 1

much as contracted tensors are invariant

¢ = ¢ ¢ ¢ =( ) ( )X g Y X g Y X g Y . D8i
ik

k i
ik

k i
ik

k

We now see that the 2× 2 matrices hℓ and hr do for spinor indices what gik does for tensor
indices.

Now if Dℓ= e− z·σ/2, then = s*·D ez
r

2, and so = -†D Dr ℓ
1. So we can set = - †h hr ℓ

1 .
Thus in two-component notation, the gauge-field action SL (24) is

ò s s

s s

= - + ⋅ - ⋅

+ + ⋅ + ⋅

-

-

{ [( ) ( ) ]

[( ) ( ) ]} ( )

†

†

R B R B

R B R B

S
m

h i h

i h i h g x

1

16
Tr i

Tr d . D9

L ik ik
ik ik

ik ik
ik ik

2 ℓ ℓ
1

ℓ
1

ℓ
4

Since ¢ = - -†h D h Dℓ ℓ ℓ ℓ
1 1, we may choose hℓ to be hermitian =†h hℓ ℓ, which implies that the

diagonal form of hℓ is just two real numbers. The most general 2× 2 hermitian matrix is a
linear combination of the Pauli matices σ and the identity matrix I. Under a Lorentz trans-
formation Λ, the 4-vector sº -( )s I ,ℓ

a transforms as

L L = L( ) ( ) ( )†D s D s D10ℓ ℓ
a

ℓ b
a

ℓ
b

while the 4-vector sº ( )s I ,r
a transforms as

L L = L( ) ( ) ( )†D s D s . D11r r
a

r b
a

r
b

The 4× 4 matrix h (30) is

bg bg= = = ⎜ ⎟
⎛
⎝

⎞
⎠

( )h i c K i K
s K

s K
0

0
. D12a

a
i

i
a

a

a
a

r
a

a

ℓ

Under a local Lorentz transformation Λ=Λ(x), the vector field Ka(x) goes to

¢ = L L = L-( ) ( ) ( ) ( ) ( ) ( )K x U K x U K x . D13a a a
b

b
1

So the explicitly Å( ) ( ), 0 0,1

2

1

2
version of h goes as

=
L

L
= =¢ - -

- -

- -⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟ ( )†

†

†
h

s K

s K
D hD

D s D K

D s D K

0

0

0

0
D14

a
a
b

b

r
a

a
b

b

b
b

r r
b

r b

ℓ 1 1 ℓ
1

ℓ ℓ
1

1 1

since

= L = L

= L = L

- - -

- - - ( )

†

†

D s D K s K s K

D s D K s K s K . D15
ℓ ℓ

b
ℓ b ℓ

a
a

b
b ℓ

a
a
b

b

r r
b

r b r
a

a
b

b r
a

a
b

b

1 1 1

1 1 1
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Appendix E. Hermitian form of the Dirac action

The fully expanded covariant derivative Diψ is

s sy g y= ¶ - -⎛
⎝

⎞
⎠

· · ( )r bD Ii
1

2

1

2
. E1i i i i

5

If y y b=¯ † , then y g y- ¯ c Da
a

i
i is

s s

s s

y b g y y b g y y b g y y b g g y

y b g y y bg y y b g g y

- =- ¶ - - ⋅ - - ⋅

=- ¶ + ⋅ + ⋅

( )

( ) ( ) ( )

( )

† † † †

† † †

E2

r b

r b

c D c c i I c

c i c I c

1
2

1
2

1
2

1
2

.

a
a

i
i

a
a

i
i

a
a

i
i

a
a

i
i

a
a

i
i

a
a

i
i

a
a

i
i

5

5

Its adjoint y g y-[ ¯ ]†c Da
i a

i is

s sy bg y y bg y y bg y y bg g y- = - ¶ + ⋅ + ⋅

º + +

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( )

[ ] [ ( )]† † † † †
†

†
†

E3

r bc D c i c I c

A A A

1
2

1
2

.

a
a

i
i

a
a

i
i

a
a

i
i

a
a

i
i

5

1 2 3

Now β γ a= iγ0γ a is antihermitian, so the first term is

y bg y y b g y y b g y y b g y= - ¶ = ¶ = - ¶ - ¶[ ( )] ( ) ( )
( )

† † † † †A c c c c .

E4

a
a

i
i i

a
a

i a
i a

i a
a

i
i1

The second term is

s s sy bg y y b g y y b g y= ⋅ = ⋅ = ⋅⎡
⎣

⎤
⎦ ( )

†
†

† †r r rA i c I i I c i I c
1

2

1

2

1

2
.

E5

a
a

i
i i

a
a

i
i

a
a

i
2

The third term is

s s sy bg g y y g b g y y b g g y= ⋅ = - ⋅ = - ⋅⎡⎣ ⎤⎦
† † † †b b bA c c c .a

a
i

i i
a

a
i

i
a

a
i

3
1
2

5 1
2

5 1
2

5

Since [σ s, γ j]= 2i òsjkγ
k, we have

s g g s g= + ( )i2 . E6s j j s
sjk

k

So the r terms are

s s s

s s

y bg y y b g y y b g s y

y b g b y y g y

⋅ + ⋅ = ⋅ +

= ⋅ + = ⋅ -

( )

( { })

( ) ( )

† † †

† †

E7

r r r

r r

i c I i I c c I c r i

c I c r c I c r

1
4

1
4

1
4

2 ,

1
2

1
2

,

a
a

i
i i

a
a

i i
i j

i
i
s j s

i
i s

i
i
s i

i s
i

i
s

0

0
5

0
5

while the b terms are

s sy bg g y y b g g y y b g g y⋅ - ⋅ = ( )† † †b bc c i c b
1

2

1

2
. E8a

a
i

i i
a

a
i

tsk t
i

i
s k5 5 5

The hermitian Dirac action density then is

sy b g y y b g y y g y y s y= - ¶ - ¶ + ⋅ - - ( )( ) ( )† † † † E9rc c c I c r c b
1
2

1
2

1
2

.a
i a

i
a

i a
i i

i s
i

i
s

jsk j
i

i
s k

0
5
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