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I. INFINITIES

Infinite terms have been an awkward aspect of quantum
field theory for more than 80 years. This paper will show
that by adding certain nonrenormalizable terms to the usual
action density of a free scalar field, one can construct
nonrenormalizable theories whose exact Euclidian and
Minkowskian Green’s functions are less singular than
those of the free theory. In some cases, they are finite.
One may use lattice methods to extract physical informa-
tion from these less singular, nonrenormalizable theories.
The perturbative expansions of these nonrenormalizable
theories are, of course, singular.

The history of attempts to cope with the infinities of
quantum field theory is too vast to review here, but it may
be useful for me to say what this paper is not about. Most of
the early work on infinities described ways to cancel the
infinities of the perturbative expansion of a theory against
other infinite terms present in the original Lagrangian of
the same theory. Dimensional regularization [1] was a high
point of this work. This paper is not about renormalization
[2]. Somewhat more recent work used space-time lattices
[3] or strong-coupling expansions [4]. This paper has
nothing to do with these techniques, but one may use
them to extract physical information from the nonrenor-
malizable theories to which this paper points. Over the past
three decades, string theorists have constructed theories
that are intrinsically finite because their basic objects are
extended in at least one dimension [5]. This paper is much
more modest. Its main point is that some nonrenormaliz-
able theories are less singular than theories that are free or
renormalizable. Its only antecedent, as far as I know, is a
very interesting paper by Boettcher and Bender [6].

I will discuss Green’s functions first in Euclidian space
and then in Minkowski space.

II. EUCLIDIAN GREEN’S FUNCTIONS

The mean value in the ground state of a Euclidian-time-
ordered product of fields is a ratio of path integrals [7]

Geðx1; . . . ; xnÞ � h0jT ½�eðx1Þ . . .�eðxnÞ�j0i

¼
R
�ðx1Þ . . .�ðxnÞ exp ½�

R
Leð�Þd4x�D�R

exp ½�R
Leð�Þd4x�D�

(1)

in which Le is the Euclidian action density and the time
dependence of the field is �eðt; ~xÞ ¼ etH�eðt; ~xÞe�tH

where H is the Hamiltonian. If the action density is
quadratic,

Le ¼ 1

2
ð@��Þ2 þ 1

2
m2�2 ¼ 1

2
ð _�Þ2 þ 1

2
ðr�Þ2 þ 1

2
m2�2;

(2)

we can compute the Green’s functions by doing Gaussian
integrals. The 2-point function is

Geðx1; x2Þ ¼ h0jT ½�eðx1Þ�eðx2Þ�j0i

¼
R
�ðx1Þ�ðx2Þ exp ½�

R
Leð�Þd4x�D�R

exp ½�R
Leð�Þd4x�D�

¼ �eðx1 � x2Þ ¼
Z eipðx1�x2Þ

p2 þm2

d4p

ð2�Þ4 : (3)

It diverges quadratically as � � jx1 � x2j ! 0:

lim
x2!x1

h0jT ½�eðx1Þ�eðx2Þ�j0i ¼ h0j�2
eðx1Þj0i / 1

�2
: (4)

In what follows, I will show that the addition of certain
nonrenormalizable terms to the action density (25) suffi-
ciently damps the field fluctuations of the resulting non-
renormalizable theory as to make its Green’s functions less
singular or even finite.

III. TOY THEORIES IN EUCLIDIAN SPACE

Toy theories without derivatives are easy to analyze
because their functional integrals are infinite products of
ordinary integrals. In the toy theory with Le ¼ m2�2 and
no derivative terms, the 2-point function Geðx; xÞ is a ratio
of products of integrals, all but one of which cancel:*cahill@unm.edu
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h0j�2ðxÞj0i ¼
R
�2ðxÞ exp f�R

m2�2ðx0Þd4x0gD�R
exp f�R

m2�2ðx0Þd4x0gD�

¼
R
�2ðxÞ exp f�m2�2ðxÞd4xgd�ðxÞR

exp f�m2�2ðxÞd4xgd�ðxÞ : (5)

Setting d4x ¼ �4 and y ¼ m�ðxÞ�2, we find

h0j�2ðxÞj0i ¼ lim
�!0

1

m2�4

R
y2e�y2dyR
e�y2dy

¼ 1

2m2
lim
�!0

1

�4
: (6)

The 2-point function of this toy theory without derivatives
diverges quartically. This makes perfect sense because if
we remove the p2 from the denominator of the 2-point
function (26), then it too diverges quartically. The deriva-
tives of the soluble theory (25) tether the field �ðxÞ to its
values at neighboring points and so reduce the divergence
of the mean value of its square h0j�2ðxÞj0i from quartic to
quadratic.
We now add a quartic interaction and consider the toy

theory with action density Le ¼ m2�2ðxÞ þ ��4ðxÞ. The
2-point function Geðx; xÞ is again a ratio of products of
integrals, all but one of which cancel:

h0j�2ðxÞj0i ¼
R
�2ðxÞ exp f�R

m2�2ðx0Þ þ ��4ðx0Þd4x0gD�R
exp f�R

m2�2ðx0Þ þ ��4ðx0Þd4x0gD�

¼
R
�2ðxÞ exp f�½m2�2ðxÞ þ ��4ðxÞ�d4xgd�ðxÞR

exp f�½m2�2ðxÞ þ ��4ðxÞ�d4xgd�ðxÞ : (7)

Setting d4x ¼ �4 and y ¼ �1=4��ðxÞ, we have

h0j�2ðxÞj0i ¼ lim
�!0

1ffiffiffiffi
�

p
�2

R
y2 exp ½�ð�2m2y2=

ffiffiffiffi
�

p þ y4Þ�dyR
exp ½�ð�2m2y2=

ffiffiffiffi
�

p þ y4Þ�dy
¼ �ð3=4Þ

�ð1=4Þ ffiffiffiffi
�

p lim
�!0

1

�2
(8)

apart from finite terms. The quartic term ��4ðxÞ in the action density has provided enough damping to reduce the
divergence of Geðx; xÞ from quartic to quadratic.

The action density of our third toy model is Le ¼ m2�2ðxÞ þ ��4�2n�2nðxÞ in which n � 2, and� is a mass parameter.
Boettcher and Bender have studied an n ! 1 limit of this model [6]. Now after canceling identical integrals in the ratio of

path integrals and setting d4x ¼ �4 and y ¼ �1=2n�2=n�1�2=n�ðxÞ, we get

h0j�2ðxÞj0i ¼ lim
�!0

R
�2ðxÞ exp f�½m2�2ðxÞ þ ��4�2n�2nðxÞ�d4xgd�ðxÞR

exp f�½m2�2ðxÞ þ ��4�2n�2nðxÞ�d4xgd�ðxÞ

¼ lim
�!0

�2�4=n

�1=n�4=n

R
y2 exp f�½�4�4=nm2�2�4=n��1=ny2 þ y2n�gdyR
exp f�½�4�4=nm2�2�4=n��1=ny2 þ y2n�gdy

¼ �2�4=n

�1=n

�ð3=2nÞ
�ð1=2nÞ lim�!0

1

�4=n
(9)

apart from terms that are finite. As n rises, the singularity in the Green’s function Geðx; xÞ softens. For n ¼ 4, the
divergence is linear; for n ¼ 8, it is a square root.

The action density of our fourth and final nonderivative toy theory is

Le ¼ m2M2

�
1

1��2=M2
� 1

�
� m2M2

X1
‘¼1

�2‘

M2‘
: (10)

It is infinite for�2 � M2. This singularity effectively limits the path integral to fields in the range�M<�ðxÞ<M for all
space-time points x. Setting d4x ¼ �4 and y ¼ �ðxÞ=M, we find, after a cancellation in which only the integration over
�ðxÞ survives, that even the 2n-point function

KEVIN CAHILL PHYSICAL REVIEW D 87, 065024 (2013)

065024-2



h0j�2nðxÞj0i ¼
R
�2nðxÞ exp

n
�
h
m2M2

�
1

1��2ðxÞ=M2 � 1Þ
i
d4x

o
d�ðxÞ

R
exp

n
�
h
m2M2

�
1

1��2ðxÞ=M2 � 1
�i
d4x

o
d�ðxÞ

¼ lim
�!0

R
M
�M �2n exp

h
��4

�
m2M2

1��2=M2

�i
d�

R
M
�M exp

h
��4

�
m2M2

1��2=M2

�i
d�

¼ M2nlim
�!0

R
1
�1 y

2n exp
h
��4

�
m2M2

1�y2

�i
dy

R
1
�1 exp

h
��4

�
m2M2

1�y2

�i
dy

¼ M2n

R
1
�1 y

2ndyR
1
�1 dy

¼ M2n

2nþ 1
(11)

is finite.

IV. LATTICE MODELS OF THEORIES WITH
DERIVATIVES IN EUCLIDIAN SPACE

We now add derivative terms to our toy models. The first
toy model becomes the soluble theory with 2-point func-
tion (26). The action density of the second toy model with
derivatives is

L4 ¼ 1

2
½ _�2 þ ðr�Þ2 þm2�2� þ ��4: (12)

We can put it on a lattice of spacing a if we take the action
S to be a sum over all vertices v of the vertex action

S4;v¼a4

4

X4
j¼1

�
�ðvÞ��ðvþ ĵÞ

a

�
2þa4m2

2
�2ðvÞþa4��4ðvÞ

¼1

4

X4
j¼1

ð’ðvÞ�’ðvþ ĵÞÞ2þ1

2
a2m2’2ðvÞþ�’4ðvÞ

(13)

in which each vertex is labeled by four integers v ¼
ðn1; n2; n3; n4Þ, the field ’ ¼ a� is dimensionless, and

ĵk ¼ �j;k. Apart from the mass term, the lattice spacing a

has disappeared from the action, but it reappears in the
Green’s functions:

h0jT ½�eðv1Þ . . .�eðvnÞ�j0i

¼
R
�ðv1Þ . . .�ðvnÞ exp ½�

R
L4ð�Þd4x�D�R

exp ½�R
L4ð�Þd4x�D�

¼ lim
a!0

1

an

R
’ðv1Þ . . .’ðvnÞ exp ð�P

v S4;vÞ
Q

v d’ðvÞR
exp ð�P

v S4;vÞ
Q

v d’ðvÞ
:

(14)

For instance, the 2-point function is

h0jT ½�eðv1Þ�eðv2Þ�j0i

¼ lim
a!0

1

a2

R
’ðv1Þ’ðv2Þ exp ð�

P
v S4;vÞ

Q
v d’ðvÞR

exp ð�P
v S4;vÞ

Q
v d’ðvÞ

:

(15)

As v2 ! v1, this ratio still diverges quadratically, like its
toy twin (31), so the quartic and derivative terms do not
conspire to further reduce this divergence in Geðv1; v1Þ.

The third toy model with derivatives has action density

L2n ¼ 1

2
½ _�2 þ ðr�Þ2 þm2�2� þ ��4�2n�2n: (16)

Boettcher and Bender have studied an n ! 1 limit of this
model [6]. Its lattice action S is a sum over all vertices v of

S2n;v ¼ a4

4

X4
j¼1

�
�ðvÞ ��ðvþ ĵÞ

a

�
2 þ a4m2

2
�2ðvÞ

þ a4��4�2n�2nðvÞ

¼ a2�4=n��1=n�2�4=n

4

X4
j¼1

ð’ðvÞ � ’ðvþ ĵÞÞ2

þ 1

2
a4�4=n��1=nm2�2�4=n’2ðvÞ þ ’2nðvÞ (17)

in which the field ’ðvÞ ¼ �1=2n�2=n�1a2=n�ðvÞ is dimen-
sionless. The 2-point function

h0jT ½�eðv1Þ�eðv2Þ�j0i

¼ lim
a!0

�2�4=n

�1=na4=n

R
’ðv1Þ’ðv2Þexp ð�

P
v S2n;vÞ

Q
v d’ðvÞR

expð�P
v S2n;vÞ

Q
vd’ðvÞ

(18)

for n > 2 and v1 ¼ v2 is less singular than 1=a2.
The fourth toy model with derivatives is

Le ¼ 1

2
ð@��Þ2 þ 1

2
m2M2

�
1

1��2=M2
� 1

�

� 1

2
ð@��Þ2 þ 1

2
m2M2

X1
n¼1

�2n

M2n
: (19)

Its lattice action is a sum over all vertices v of the vertex
action

SM;v ¼ a4

4

X4
j¼1

�
�ðvÞ ��ðvþ ĵÞ

a

�
2

þ a4m2M2

2

�
1

1��2ðvÞ=M2
� 1

�

¼ a2M2

4

X4
j¼1

ð’ðvÞ � ’ðvþ ĵÞÞ2

þ a4m2M2

2

�
1

1� ’2ðvÞ � 1

�
(20)
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in which the field ’ ¼ �=M is dimensionless. The essen-
tial singularity in the functional integrals effectively
restricts the field ’ðvÞ to the interval �1<’ðvÞ< 1.
The 2n-point function

h0jT ½�eðv1Þ. . .�eðv2nÞ�j0i

¼M2nlim
a!0

R
1
�1’ðv1Þ. . .’ðv2nÞexpð�

P
vSM;vÞ

Q
vd’ðvÞR

1
�1 expð�

P
vSM;vÞQvd’ðvÞ

(21)

is finite for all n, even when all the points coincide,
vj ¼ v0,

h0j�2n
e ðv0Þj0i

¼ M2nlim
a!0

R
1
�1 ’

2nðv0Þ exp ð�
P

v SM;vÞ
Q

v d’ðvÞR
1
�1 exp ð�

P
v SM;vÞ

Q
v d’ðvÞ

¼ M2n

2nþ 1
: (22)

V. GREEN’S FUNCTIONS IN MINKOWSKI SPACE

We have seen that the addition of certain nonrenorma-
lizable terms to the Euclidian action density of a theory of
scalar fields can make the Euclidian Green’s functions of
the resulting nonrenormalizable theory less singular or
even finite. To extend these results to Green’s functions
in Minkowski space and avoid extra notation, I will con-
tinue to focus on theories of a single scalar field. The mean
value in the ground state of a time-ordered product of fields
is a ratio of path integrals [7]

Gðx1; . . . ; xnÞ � h0jT ½�ðx1Þ . . .�ðxnÞ�j0i

¼
R
�ðx1Þ . . .�ðxnÞ exp ½i

R
Lð�Þd4x�D�R

exp ½iRLð�Þd4x�D�

(23)

in which L is the action density and the time dependence of
the field �ðxÞ is �ðt; ~xÞ ¼ eitH�ðt; ~xÞe�itH where H is the
Hamiltonian. The symbol D� means that we should inte-
grate over all real functions �ðxÞ of space-time and also
should include in both the numerator and the denominator
the factors h0j�ð1; ~xÞi and h�ð�1; ~xÞj0i, which lead to
the i� terms in propagators. Green’s functions play a
central role in quantum field theory; they occur, for
example, in the Lehmann-Symanzik-Zimmermann reduc-
tion formula [8] for the scattering of n incoming particles
of momenta p1 . . .pn � fpg into n0 outgoing particles of
momenta p0

1 . . .p
0
n � fp0g

hp0jpi ¼ Yn
‘¼1

Yn0
‘0¼1

Z
d4x‘d

4x0‘0e
ip‘x‘�ip0

‘0x
0
‘0 ð�@2‘ þm2Þ

� ð�@02‘ þm2Þh0jT ½�ðx1Þ . . .�ðxnþn0 Þ�j0i: (24)

If the action density is the quadratic form

L ¼ � 1

2
@��@��� 1

2
m2�2

¼ 1

2
ð _�Þ2 � 1

2
ðr�Þ2 � 1

2
m2�2; (25)

then we can compute all the Green’s functions. The 2-point
function, for instance, is

Gðx1; x2Þ ¼ h0jT ½�ðx1Þ�ðx2Þ�j0i

¼
R
�ðx1Þ�ðx2Þ exp ½i

R
Lð�Þd4x�D�R

exp ½iRLð�Þd4x�D�

¼ �ðx1 � x2Þ ¼
Z eipðx1�x2Þ

p2 þm2 � i�

d4p

ð2�Þ4 : (26)

It diverges quadratically as � � jx1 � x2j ! 0:

lim
x2!x1

h0jT ½�ðx1Þ�ðx2Þ�j0i ¼ h0j�2ðx1Þj0i / 1

�2
: (27)

In what follows, I will show that the addition of certain
nonrenormalizable terms to the action density (25) makes
its Green’s functions (23) less singular or even finite.

VI. TOY THEORIES IN MINKOWSKI SPACE

In the toy theory with L ¼ �m2�2 and no derivative
terms, the 2-point function Gðx; xÞ is a ratio of products of
integrals, all but one of which cancel:

h0j�2ðxÞj0i ¼
R
�2ðxÞ exp f�i

R
m2�2ðx0Þd4x0gD�R

exp f�i
R
m2�2ðx0Þd4x0gD�

¼
R
�2ðxÞ exp f�im2�2ðxÞd4xgd�ðxÞR

exp f�im2�2ðxÞd4xgd�ðxÞ : (28)

Setting d4x ¼ �4 and y ¼ m�ðxÞ�2, we find

h0j�2ðxÞj0i ¼ lim
�!0

1

m2�4

R1
0 y2e�iy2dyR1
0 e�iy2dy

¼ 2
ffiffiffi
2

p
ð1� iÞ ffiffiffiffi

�
p

m2
lim
�!0

1

�4

Z 1

0
y2e�iy2dy (29)

in which the final integral does not converge. The 2-point
function of this toy theory without derivatives diverges a
bit worse than quartically.
We now add a quartic interaction and consider the toy

theory with action density L ¼ �m2�2ðxÞ � ��4ðxÞ. The
2-point function Gðx; xÞ is again a ratio of products of
integrals, all but one of which cancel:

h0j�2ðxÞj0i

¼
R
�2ðxÞ exp f�i

R
m2�2ðx0Þ þ ��4ðx0Þd4x0gD�R

exp f�i
R
m2�2ðx0Þ þ ��4ðx0Þd4x0gD�

¼
R
�2ðxÞ exp f�i½m2�2ðxÞ þ ��4ðxÞ�d4xgd�ðxÞR

exp f�i½m2�2ðxÞ þ ��4ðxÞ�d4xgd�ðxÞ :

(30)
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Setting d4x ¼ �4 and y ¼ �1=4��ðxÞ, we have

h0j�2ðxÞj0i ¼ lim
�!0

1ffiffiffiffi
�

p
�2

R
y2 exp ½�ið�2m2y2=

ffiffiffiffi
�

p þ y4Þ�dyR
exp ½�ið�2m2y2=

ffiffiffiffi
�

p þ y4Þ�dy
¼ �ð3=4Þ

ð�1Þ1=4�ð1=4Þ ffiffiffiffi
�

p lim
�!0

1

�2
(31)

or 0:238994ð1� iÞ= ffiffiffiffi
�

p
�2 apart from finite terms. The

quartic term ���4ðxÞ in the action density has reduced

the divergence of Gðx; xÞ from a little more than quartic to
quadratic.
The action density of our third toy model is L ¼

�m2�2ðxÞ � ��4�2n�2nðxÞ in which n � 2 and �
is a mass parameter. Boettcher and Bender have studied
an n ! 1 limit of this model [6]. Now after
canceling identical integrals in the ratio of path integrals

and setting d4x ¼ �4 and y ¼ �1=2n�2=n�1�2=n�ðxÞ,
we get

h0j�2ðxÞj0i ¼ lim
�!0

R
�2ðxÞ exp f�i½m2�2ðxÞ þ ��4�2n�2nðxÞ�d4xgd�ðxÞR

exp f�i½m2�2ðxÞ þ ��4�2n�2nðxÞ�d4xgd�ðxÞ

¼ lim
�!0

�2�4=n

�1=n�4=n

R
y2 exp f�i½�4�4=nm2�2�4=n��1=ny2 þ y2n�gdyR
exp f�i½�4�4=nm2�2�4=n��1=ny2 þ y2n�gdy

¼ e�i�=2n �
2�4=n

3�1=n

�ð1þ 3=2nÞ
�ð1þ 1=2nÞ lim�!0

1

�4=n
(32)

apart from terms that are finite. As n rises, the singularity in
the Green’s function Gðx; xÞ softens. For n ¼ 4, the diver-
gence is linear; for n ¼ 8, it is a square root.

The action density of our fourth and final nonderivative
toy theory is

L¼�m2M2

�
1

1��2=M2
� 1

�
��m2M2

X1
‘¼1

�2‘

M2‘
: (33)

It is infinite for �2 � M2. This singularity effectively
limits the path integral to fields in the range�M<�ðxÞ<
M for all space-time points x. Setting d4x ¼ �4 and y ¼
�ðxÞ=M, we find, after a cancellation in which only the
integration over �ðxÞ survives, that even the 2n-point
function

h0j�2nðxÞj0i ¼
R
�2nðxÞ exp

n
�i

Rh
m2M2

�
1

1��2ðx0Þ=M2 � 1
�i
d4x0

o
D�

R
exp

n
�i

Rh
m2M2

�
1

1��2ðx0Þ=M2 � 1
�i
d4x0

o
D�

¼
R
�2nðxÞ exp

n
�i

h
m2M2

�
1

1��2ðxÞ=M2 � 1
�i
d4x

o
d�ðxÞ

R
exp

n
�i

h
m2M2

�
1

1��2ðxÞ=M2 � 1
�i
d4x

o
d�ðxÞ

¼ lim
�!0

R
M
�M �2n exp

h
�i�4

�
m2M2

1��2=M2

�i
d�

R
M
�M exp

h
�i�4

�
m2M2

1��2=M2

�i
d�

¼ M2nlim
�!0

R
1
�1 y

2n exp
h
�i�4

�
m2M2

1�y2

�i
dy

R
1
�1 exp

h
�i�4

�
m2M2

1�y2

�i
dy

¼ M2n

R
1
�1 y

2ndyR
1
�1 dy

¼ M2n

2nþ 1
(34)

is finite. By symmetry, one has h0j�2nþ1ðxÞj0i ¼ 0.

VII. LATTICE MODELS OF THEORIES WITH
DERIVATIVES IN MINKOWSKI SPACE

We now add derivative terms to our toy models. The first
toy model becomes the soluble theory with 2-point func-
tion (26). The action density of the second toy model with
derivatives is

L4 ¼ 1

2
½ _�2 � ðr�Þ2 �m2�2� � ��4: (35)

We can put it on a lattice of spacing a if we take the action
S to be a sum over all vertices v of the vertex action

S4;v ¼ �a4

4

X3
j¼0

�jj

�
�ðvÞ ��ðvþ ĵÞ

a

�
2

� a4m2

2
�2ðvÞ � a4��4ðvÞ

¼ � 1

4

X3
j¼0

�jjð’ðvÞ � ’ðvþ ĵÞÞ2

� 1

2
a2m2’2ðvÞ � �’4ðvÞ (36)
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in which each vertex is labeled by four integers
v ¼ ðn0; n1; n2; n3Þ, the field ’ ¼ a� is dimensionless,

ĵk ¼ �j;k, and � is the diagonal metric of flat space

diagð�Þ ¼ ð�1; 1; 1; 1Þ. Apart from the mass term, the
lattice spacing a has disappeared from the action, but it
reappears in the n-point functions

h0jT ½�ðv1Þ . . .�ðvnÞ�j0i

¼
R
�ðv1Þ . . .�ðvnÞ exp ½�i

R
L4ð�Þd4x�D�R

exp ½�i
R
L4ð�Þd4x�D�

¼ lim
a!0

1

an

R
’ðv1Þ . . .’ðvnÞ exp ð�i

P
v S4;vÞ

Q
v d’ðvÞR

exp ð�i
P

v S4;vÞ
Q

v d’ðvÞ
:

(37)

For instance, the 2-point function is

h0jT ½�ðv1Þ�ðv2Þ�j0i

¼ lim
a!0

1

a2

R
’ðv1Þ’ðv2Þ exp ð�i

P
v S4;vÞ

Q
v d’ðvÞR

exp ð�i
P

v S4;vÞ
Q

v d’ðvÞ
:

(38)

When v2 ! v1, this ratio still diverges quadratically, like
its toy twin (31), so the quartic and derivative terms do not
conspire to further reduce this divergence in Gðv1; v1Þ.

The third toy model with derivatives has action density

L2n ¼ 1

2
½ _�2 � ðr�Þ2 �m2�2� � ��4�2n�2n: (65)

Boettcher and Bender have studied an n ! 1 limit of this
model [6]. Its lattice action S is a sum over all vertices v of

S2n;v ¼ �a4

4

X3
j¼0

�jj

�
�ðvÞ ��ðvþ ĵÞ

a

�
2

� a4m2

2
�2ðvÞ � a4��4�2n�2nðvÞ

¼ �a2�4=n��1=n�2�4=n

4

X3
j¼0

�jjð’ðvÞ � ’ðvþ ĵÞÞ2

� 1

2
a4�4=n��1=nm2�2�4=n’2ðvÞ � ’2nðvÞ (40)

in which the field ’ðvÞ ¼ �1=2n�2=n�1a2=n�ðvÞ is dimen-
sionless. The 2-point function

h0jT ½�ðv1Þ�ðv2Þ�j0i

¼ lim
a!0

�2�4=n

�1=na4=n

R
’ðv1Þ’ðv2Þexpð�i

P
vS2n;vÞ

Q
vd’ðvÞR

expð�i
P

vS2n;vÞ
Q

vd’ðvÞ
(41)

for n > 2 and v1 ¼ v2 is less singular than 1=a2.

The fourth toy model with derivatives is

L ¼ � 1

2
@��@���m2M2

�
1

1��2=M2
� 1

�

� � 1

2
@��@��� 1

2
m2M2

X1
n¼1

�2n

M2n
:

(42)

Its lattice action is a sum over all vertices v of the vertex
action

SM;v ¼ � a4

4

X3
j¼0

�jj

�
�ðvÞ ��ðvþ ĵÞ

a

�
2

� a4m2M2

2

�
1

1��2ðvÞ=M2
� 1

�

¼ � a2M2

4

X3
j¼0

�jjð’ðvÞ � ’ðvþ ĵÞÞ2

� a4m2M2

2

�
1

1� ’2ðvÞ � 1

�
(43)

in which the field ’ ¼ �=M is dimensionless. The essen-
tial singularity in the functional integrals effectively
restricts the field ’ðvÞ to the interval �1<’ðvÞ< 1.
The 2n-point function

h0jT ½�ðv1Þ...�ðv2nÞ�j0i

¼M2nlim
a!0

R
1
�1’ðv1Þ...’ðv2nÞexpð�i

P
vSM;vÞ

Q
vd’ðvÞR

1
�1expð�i

P
vSM;vÞ

Q
vd’ðvÞ

(44)

is finite for all n, even when all the points coincide,
vj ¼ v0,

h0j�2nðv0Þj0i

¼ M2nlim
a!0

R
1
�1 ’

2nðv0Þ exp ð�i
P

v SM;vÞQv d’ðvÞR
1
�1 exp ð�i

P
v SM;vÞ

Q
v d’ðvÞ

¼ M2n

2nþ 1
: (45)

VIII. CONCLUSION

The addition of terms like �2n for n > 2 or (m2M2=2)
½ð1��2=M2Þ�1 � 1� to the usual action density (25) of a
scalar field leads to nonrenormalizable theories whose
exact Green’s functions in Euclidian and Minkowski space
are less singular than those of the free theory. In some
cases, they are finite. One may use lattice methods to
extract physical information from these less singular, non-
renormalizable theories.
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If the results of this paper can be extended to fields
of higher spin, then nonrenormalizable theories may
have more to teach us, and their lessons may be impor-
tant because of the nonrenormalizability of general
relativity and the absence of experimental evidence for
supersymmetry [9].
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