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Unitary gauge theories of noncompact groups
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It is noted that the use of an internal metric field allows one to gauge noncompact internal-

symmetry groups without sacrificing unitarity. The possibility that such theories could be ren-

dered renormalizable is discussed.

In a recent interesting paper, ' Hsu and Xin have
shown that a specific gauge theory of the noncompact
group SL(2,C) is not unitary. The theory in ques-
tion, which they abstracted from a work of Wu and
Yang, has a Hamiltonian that is not bounded below.
To avoid this difficulty, they quantized some of the
gauge mesons with a negative metric. They then
showed that this negative metric leads to a loss of
unitarity that cannot be repaired without sacrificing
gauge invariance.

Our purpose here is to recall that unitary gauge
theories of arbitrary noncompact groups have been
constructed' ' and to suggest how they might be
made renormalizable.

Let us suppose that we wish to construct a gauge
theory of n complex scalar fields $, whose Lagrangi-
an is invariant under the local action

y (x) =alj(x)yj(x)

of the general linear group of all complex nonsingu-
lar n x n matrices, GL(n, C) The ke. y step is to in-
troduce a metric field gtl(x) that is Hermitian and
positive and that transforms as

gs(x) = [rr '(x)]kgkl(x)[rr '(x)]If

g'" are

F ' =F '+[F~'A ]

g' =g' +g' A +A~g'

The Lagrange density

2

L = —
2 tr(F„„gF~"g ')+ tr(g.„g 'g'"g ')

4e

+S,.gS'"- V(e'ge) (10)

Q'"+g 'g $'"+ V'/=0

F"„"= [F"",g 'g,„)+ e'$ "P g —'e'm'g 'g'",

g,'~& = g „g 'g'"+ (2e.'m') 'g [g 'F„„g,F""]

+ 2m gg2'"$,„g—2m gP V'qh g

(12)

where V' is the derivative of V. The Hamiltonian is

mH=, tr(F„„gF„„g ')+ tr[(g.„g ')']

is invariant under the gauge transformation (1). The
field equations are

It is convenient to use a notation in which $ is a
column vector and g a matrix. Then a suitable co-
variant derivative for P is

+$~g$„+ V (14)

(6)g.~= g ~+gA ~+A ~g

Similarly, the covariant derivatives of Q'", F ', and

y,„(x)= y(x) „—A „(x)qh(x),

where $ ~ is the ordinary derivative of $ with respect
to x" and A „is an n && n matrix of gauge fields that
transforms as

A„'(x) =a(x)A„(x)a '(x)+a(x) „a '(x) . (4)

The curvature tensor F„„,
F„„=A„„—A„„+[A„,A„]

transforms covariantly, F„'„=aF„„a'. The covariant
derivative of g is

in which all Lorentz indices are down.
The Hamiltonian is gauge invariant. It is also posi-

tive as one may show by transforming to the gauge

g (x) =1. Since the Hamiltonian is automatically
positive, we may quantize the theory (in, e.g. , the
temporal gauge A D=0) without introducing any neg-
ative metrics. Thus unitarity follows from the natural
positivity of the Hamiltonian H.

Unfortunately, renormalizability is less automatic.
The presence of g in L ruins renormalizability un-
less we quantize in, e.g. , a gauge with g (x) =1. But
in every gauge, the gauge mesons 8'„associated
with the Hermitian part of A „acquire the mass
M = &2em. The theory is thus presumably nonrenor-
malizable, unless we set m = 0 and quantize it in a
gauge with g(x) =1.
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If m =0, then the field equation (13) for g(x) be-
comes the constraint

, (g-'~..g,~""lg-'+ e'"e,.-S I 'S' . (»)
e

This constraint would severely hobble the theory if it
were not for the sum over the Lorentz indices. In
fact, one may show that this constraint actually fol-
lows from the other two field equations (11) and
(12) when m =0. The Lagrangian (10), with m =0

and in the gauge g (x) = 1, would seem by power
counting to be renormalizable. ' We hope to report
whether this is actually true in a future publication.
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~One may obtain a unitary gauge theory of the group

SL(2,C) by setting n =2 in Eqs. (1)—(14) and by making
A

&
traceless.

7The positivity of the metric field g (x) may be ensured by

writing it in terms of a more fundamental field h (x) as
g=h h.

For gauge groups 6 smaller than GL(n, C) or GL(n, R), it
is useful to restrict g(x) to the quotient space, G/H,
where His the maximal compact subgroup of 6, in order
that the gauge g(x) =1 be available. The Hamiltonian is
positive, however, even if g is not so restricted.

~The potential V is assumed to be at most a quadratic func-
tion of the quantity P gqb.


