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A theory is outlined in which n scalar field interact in 8 way that is invariant under aH real, nonsingular

local linear transformatlons of tlM mesons among themselves. Thc cncrgy of thc system ls positive. Thc

symmetry spontaneously breaks down to a compact subgroup of GL(n, R) and the gauge mcsons of the

broken symmetry become massive. Their longitudinal components are supplied by the derivatives of an

internal metric tensol' with which no physical particles 8re associated.

This pRpex' ls about R theory thR't possesses D1Rx-

imal internal symmetry. It is a gauge theory of
n real fields p& whose I Rgrangian is invariant un-
del the locRl Rctlon

()x= a,,.{x)y,{x)

of the general linear group of Rll real, nonsingular
nan matrices, GL(n, R). Such a theory is more
symmetrical and less arbitrary than one whose in-
ternal-symmetry group is a compact subgroup of
GL(n, R), as is usually assumed. 'I

In what follows R suitable LagrRnglan will be px'0-

posed and the equations of motion and conserved
currents that follow from it will be derived. It
will be shown that the Hamiltonian is non-negative.

The theory exhibits an interesting kind of Higgs
mechanism. The vacuuxn cannot be symmetric and
the symmetry group GL(n, R) breaks down spon-
taneously to a subgroup that is similar to SO(n).
The gauge mesons associated with the noncompact
part of GL{n,R) become massive. A symmetric
internal metric tensor supplies the needed longi-
tudlnRl components.

In order to make objects thRt are invariant undex

the general linear transformation (1), it is nec-
essary to introduce a metric tensor g,&{x) that is
symmetric and positive and that transforms Rs

4 (x);„=0(x),„-A, (x)4(x), (5)

where the subscript comma mu means Sjex" Rnd the
nxn matrix of Yang-Mills fields A„(x) transforms
Rs

A„'(x) =a(x)A„(x)a '(x)+a(x) „a '(x). (~)

This transformation law for the gauge fields A
ensures that the covariant dex'ivative @.„ trans-
forms like Q,

E4 (x);„]'= a(x) 4 (x),.„.
The curvature tensor F „(x) is

F „(x)=A„(x) „-A„(x).+ [A, (x),A„(x)]

F„'„(x)=a(x)F„„(x)a '(x)

A suitable covariant derivative of the metric ten-
SO1 g 1S

g(x).„=g(x),„+g(x)A„(x)+Ar {x)g(x),

which implies that g.„ transfoxms like g,

[g(x),„]'=a ' (x)g(x), ,a '(x).

Similarly the covariant derivatives of ftl'", E~,
and g' Rx'e

g,'I{x)= [a '(x)]„g,l(x) [a '(x)]„.
In matrix notation Eqs. (1) Rnd (2) become'

@ '(x) = a(x) P(x)

fs& —@v&' Q ft) J LI

t if

Fof Fttl' + [Fof A ]
g' -g' +g '"A +A~g'"

The Lagrange dens1ty

(12)

(»)
(14)

g'(x) = a 'r{x)g{x)a '(x),

where the T means transpose. Evidently the form
@r(x)g(x)P(x) is invariant. The tensor g,.I plays
a somewhat similar role to that of the metric ten-
sor in general. relativity and contributes to the field
equations terms not present when the gauge group
1S coDlPRct.

A suitable covariant derivative for ft) is

L =-(2e) 'tr(Fr, gF""g ')

+(2f) 'tr{g;„g 'g'"g ')+ k4,'„g4'"
—2 p'(4'g4 )

Is 111VRI'1Rllt. ul1deI' tile gRllge 'tI'Rllsfol'111Rtloll (1).
The numbers e and f are independent coupling

onstants. The VRr1RtlonRl equRtlons of 1ts 1nte-
gral over space- time are
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0'"+g 'g 4'"+ l"0=0

&,"."= 9'",g 'g;. ]+e'0'0'g (e—'/f')g 'g",
(17)g" =g g 'g"+(f'/2e')g[g "+' g +'"]

+f 'g 4"0,'„g f'g-4)/'0'g, (18)

where V' is the derivative of V. The p. =0 com-
ponent of the equation for I "" isa constraint, which
may be called Qauss's law.

In the usual way, the antisymmetry of E"" im-
plies that the matrix of n' currents

J"=[+"",g 'g;. &.j -+el'"0'g
—(e'/f')g 'g'~

is conserved, Z~ = 0.
By using Gauss's law, one may write the com-

ponent T" of the canonical stress-energy tensor
as the sum of

H=(2e) 'tr(+'„.g&„.g ')+(2f) 'tr(g;„g 'g;„g ')

and the tota. l divergence

D =e ' tr(g 'Ear, gA. ')".

(20)

Thus apart from surface terms, the Hamiltonian
may be taken as the integral of the density H.
Now H is non-negative as long as g is symmetric
and of non-negative signature. [The latter con-
straint may be enforced by the device of writing
g=h~h. The field equations for h, which may be
chosen to be symmetric, are those that result from
the substitution of hrh for g in (18).j The energy
is therefore non-negative.

The metric tensor g,, participates in an inter-
esting variation of the Higgs mechanism. ' If the
potential V assumes its minimum value at Q~gQ
=0, then in the lowest approximation the (super-)
va, cuum expectation values of the fields Q and A„
vanish, while that of the metric g is a positive
symmetric matrix g, . By expanding the fields

about these vacuum values with

g =(1 —~ )g, (1 —e), (22)

while 6„„is the curl C„„—C„„ofthe antisym-
metric combination

i(g 1/2g g 1/2 g 1/erg 1/2)

The mass spectrum of physical particles is clear
from the structure of I, There are n(n+1)/2 vec-
tor mesons W„of mass M =&2(e/f). The longitud-
inal components of W„are contributed by the
n(n+1)/2 components of the symmetric metric
tensor g. There are n(n- 1)/2 massless vector mes-
ons C . There are n scalar mesons of mass
}/. = [V'(0)]'/'. There are no physical particles
corresponding to the metric g.

If the potential V assumes its minimum value
at (I5~gp &0, then the usual Higgs mechanism comes
into play as well. The particle spectrum becomes
~n(n+3) —1 massive vector mesons, ~~(n —3)+1
massless vector mesons, and 1 massive scalar
meson. Thus for n = 2 there are no massless par-
ticles, while for @=3 only one gauge meson is
massless.

It is perhaps worth emphasizing that the gauge
mesons W„are massive even in the absence of the
scala, r mesons (II). They generate the noncompact
part of GL(n, R), while the gauge mesons C g..n-

erate the compact subgroup SO(n).

one may identify the quadratic part of the Lagran-
gian (15) as

L, =-(2e) '[tr(E E'")+ tr(G'„G~")]

+f 'tr(W W")+-'P g p "
—-'1"(0)0'g 0

where F.„„is the curl W„„—W„„of the symmetric
comblnatlon

W = -'[g '/'(A —E )g

+g. I /2(/11' g1' )g
1/2

j

+Present address.
~Complex groups such as 3U(n) here are thought of as

subgroups of GL(2&, R).
~Noncompact interna1. -symmetry groups have been con-

sidered by various authors, e,g., P. Nath and B.Arno-
witt, Phys. Lett. 56B, 177 (1975); B.Arnowitt, P. Nath,

and B. Zumino, Qjd. 568, 81 (1975); and T. T. Wu and
C. N. Yang, Phys. Bev. 0 13, 3233 (1976).

~A somewhat similar mechanism has been observed by
B.Arnowitt and P. Nath, Phys. Bev. Lett. 36, 1526
(1976).


