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Regularization of the P Representation
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A representation is introduced for the density operator of the electromagnetic Geld that is suitable for all
density operators and that reduces to the coherent-state P representation when the latter exists. It expresses
the density operator p as the sum of four terms, each of which is a two-dimensional weighted integral over
outer products of coherent states. The first integral has the form of the P representation, i.e., the outer prod-
ucts are projection operators. The absence of singularities in this term is achieved by the presence of the three
supplementary integrals which vanish when the density operator possesses the P representation. In general,
for stationary density operators, only the first two terms of the regularized P representation are necessary.
A simple prescription is given for obtaining the four weight functions of this representation from the function
(o

~ o ~ol, where ~n) is a coherent state and p is the density operator. According to this prescription, the P
representation does not exist and one or more of the supplementary, regularizing terms is necessary when the
function (a

~ p ~a) contains a term that decreases more rapidly than exp( —[a ~') as [a
~

-+ ~.The regularized
P representation affords nonsingular integral expressions for all density operators and for most expectation
values, including, when they are Gnite, those of the normally ordered products of the creation and annihila-
tion operators, at and a. The construction and use of this representation is illustrated with the aid of simple
examples in which the density operator does not possess the P representation.

I. INTRODUCTION
' 'N the preceding paper, ' we had as an objective the
- ~ resolution of an ambiguity that has obscured the
role of the I' representation' ' in quantum optics. The
basic question was whether the I' representation exists
for all electromagnetic fields or only for some limited
subclass. The resolution of this ambiguity is also an ob-
jective of the present paper, in which we introduce a rep-
resentation that is suitable for all electromagnetic Gelds
and that reduces to the E representation when the latter
exists.

The I' representation expresses the density operator
p for each mode of the electromagnetic field as an inte-
gral over the projection operators upon the coherent
states. In the notation of I, it may be written as

In the main, the effort to show that the I' representa-
tion exists for all density operators has relied upon the
existence of the weight function P(n) as a member of
some space of distributions or of generalized func-

*National Research Council Postdoctoral Research Associate,' K. E. Cahill, preceding paper, Phys. Rev. 180, 1239 (1969).
hereafter referred to as I; equation numbers cited from it will be
prefixed by I.' R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).' R. J. Glauber, Phys. Rev. 130, 2529 (1963).

~ R. J. Glauber, Phys. Rev. 131,2766 (1963).
s E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
6 R. J. Glauber, Quotum OPtics used E/ectromcs edited by C.

de Witt et al. (Gordon and Breach, Science Publishers, Inc. , New
York, 1965), p. 63.' L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 234 (1965).

' K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969);
177, 1882 (1969).

~ Although the P representation has been used principally in
the description of the electromagnetic field, it applies equally well
to the description of any boson field or of any system that may be
characterized by a set of canonically conjugate Hermitian observ-
ables {q;,p, },with pq&, p;j=ihb;s,
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tions. '»'~' Prior to this writing, the only space that
has actually been shown to include the function P(n)
for every density operator is the space of ultradistribu-
tions Z'."'~ "

We improve upon this result in the present paper and
show that P(n) always lies within a well-defined and
relatively small subspace of Z'. More precisely, we show
that the singular part of I'(n) is at worst the Fourier
transform of an infinitely differentiable function. '0

We do not, however, draw from our much stronger
result the conclusion that the I' representation exists for

C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B2/4
(1965)."J.R. Klauder, Phys. Rev. Letters 15, 534 (1966), in the most
successful departure from the approach mentioned above, has sug-
gested for the P representation a species of universality based
upon a limiting procedure. It has not been shown, however, that
this procedure works for the ensemble averages of unbounded
operators into which class fall a variety of physically important
operators, such as the normally ordered products of the creation
and annihilation operators, (at)"om. 1t should also be noted that
the type of universality proved by Klauder for the P representa-
tion has been proved (and improved) in Ref. 18 for the entire
spectrum of representations for the density operator that are dis-
cussed in Ref. 8. Inasmuch as many of these representations are
decidedly less suitable for all density operators than even the P
representation, it is clear that we are dealing here. with highly at-
tenuated types of universality."M. M. Miller and E. A. Mishkin, Phys. Rev. 164, 1610 (1967)."C.L. Mehta, Phys. Rev. Letters 18, 752 (1967)."J.R. Klauder and E. C. G. Sudarshan, Fundamentals of
Quantum Optics (W. A. Benjamin, Inc., New York, 1968).» G. S. Agarwal and E. Wolf, Phys. Letters 26A, 485 (1968).

se G. S. Agarwal and E. Wolf, Phys. Rev. Letters 21, 180 (1968);
21, 656 (1968), Erratum.

h M. M. Miller, J. Math. Phys. 9, 1270 (1968).
se K. E. Cahill, thesis, Harvard University, 1967 (unpublished;

obtainable from University Microfilms, Ann Arbor), Sec. X.
Although we shall not need to know anything about the space

Z', which is the image of the space of distributions S' under the
Fourier transformation, its properties are touched upon in Appen-
dix A. For a fuller account, see Ref. 43.

'e We show that P(n) is the sum of a continuous and square-
integrable function and a distribution in the space E, which is the
image under the Fourier transformation of the space 8 of all in-
finitely differentiable functions.
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180 REGULARIZATION OF THE P REP RESENTATION

all density operators. "Rather, by using a type of mixed
Fourier-Laplace representation that has been estab-
lished" for the Fourier transform of an infinitely differ-
entiable function, we derive a representation that exists
for all density operators and that reduces to the P
representation under certain conditions. This represen-
tation may be thought of as a regularization of the P
representation; we shall refer to it as the regularized P
representation.

The regularized P representation does not in its gen-
eral form preserve the considerable simplicity that char-
acterizes the P representation. It has, however, a fairly
elementary structure for the case of stationary density
operators, i.e., those for which fp, utaj=0. These den-
sity operators it expresses in the form

p = (a)(a ( Et(a)d a+ (
—a)(a

~
Es(a)d a. (1.2)

The erst integral is of the same form as the P represen-
tation and the supplementary integral differs from it
only by virtue of the minus sign in the tet

~

—a).
For density operators that are not stationary and

that do not possess the P representation, the regularized
P representation contains two more supplementary in-
tegrals. These additional terms resemble the 6rst two
in that they are two-dimensional integrals over coher-
ent-state dyadics but differ from them in that the argu-
ments of the coherent states are restricted to values
that are purely real in the third term and purely imagi-
nary in the fourth. In its general form the regularized
P representation may be written as

p =
t a)(a ) Pt(a)dsa+ )

—a)(a [ I s(a)dsa

+ I*—y)(~+yl& (»»d*dy

( sa+ly)( —i*+sy I ~4(& y)d&dy

where the integrations over the real variables x and y
extend from minus in6nity to plus inGnity. The P repre-
sentation may be said to exist only when the three
supplementary integrals can be set equal to zero.

We present an elementary prescription for obtaining
the weight functions I't 4 from the function (a~ pea)
This prescription, incidentally, reveals a rather simple
criterion for the existence of the P representation in
terms of the asymptotic behavior of the function

(a~ p~ a) We find tha.t the I' representation exists when
the function (a

~ p ~
a) may be written as a sum of terms

each of which decreases, for large values of ~a~, less

"The problem is one of compatibility. Distributions require
representations and the representations available to distributions
of type E are incompatible with the single integral form of the I'
representation.

'21. Khrenpreis, Trans. Am. Math. Soc. 101, 52 (1961}.

slowly than exp( —
j aj '). When, on the other hand, the

function (a~ pea) contains a term that decreases more
rapidly than exp( —~a~'), one or more of the supple-
mentary integrals of Eq. (1.3) is necessary.

The weight functions of the regularized P representa-
tion are suitably nonsingular for all density operators.
For the vast majority of density operators, including
most of those that do not possess the P representation,
they are extremely well-behaved functions.

The regularized P representation faithfully reproduces
the expectation values Trt p(at)"a ) of the normally
ordered products of the creation and annihilation
operators. ""These quantities are of primary physical
interest occurring, as they do, in the expressions for the
correlation functions for the electromagnetic Geld. '4
For the special case of stationary density operators,
these expectation values vanish for e Qm, and for I=m
they assume the form'~

Trfp (gt) llew jt

—f fgg—2l4gl2jP~ O

The magnitude of the second term, which is zero when
the P representation exists, is a measure of the accuracy
of the proposition that the P representation exists for
all density operators.

In Sec. II we review some relevant relations between
the weight function P(a) of the P representation and
other functions of physical interest. The mathematical
basis for the regularized P representation is a theorem
about the Fourier transform of an inGnitely differen-
tiable function which we explain in Sec. III. In Sec. IV
we derive the regularized P representation and show
how to Gnd the four weight functions from the function
(a~ p~a). The properties of the regularized I' represen-
tation are illustrated in Sec. V, where we construct it
for some simple density operators that do not possess
the I' representation. The formula (1.4) and its analog
for nonstationary density operators are also illustrated
in these examples.

II. FOURIER TRANSFORM RELATIONS

The basic properties of the coherent states
~
a) and of

the displacement operators D(a) were set forth in Sec.
II of I. In this section we use these properties to derive

'3 The regularized P representation leads also, of course, to the
correct values for the ensemble averages Tr(pt) of other less singu-
lar operators Ii. We emphasize here the normally ordered products
because of their close connection with experiment and because
their expectation values are known (Refs. 24-26) to lie beyond the
reach of the I' representation.

s4 K. E. Cahill, Phys. Rev. 138, B1566 (1965).
~5 R. Bonifacio, L. M. Narducci, and E. Montaldi, Phys. Rev.

Letters 16, 1125 (1966).
~'R. Bonifacio, L. M. Narducci, and E. Montaldi, Nuovo

Cimento 47, 890 (1967).
"The general form of Eq. (1.4), Eq (4.19) below, .contains two

more integrals corresponding to the third and fourth supplemen-
tary integrals in Eq. (1.3).
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relation (2.3), together with Eqs. (2.12) and (2.14), we
may write

Tr(pF) = P(cr)(n
~
F

~
n)d'a. (2.16)

This relation expresses the full content of the P repre-
sentation (1.1) and is equivalent to it.

When the normally ordered characteristic function
Xz($) is not square-integrable but is a tempered distri-
bution, then a modified P representation may be said
to exist with a weight function P(n) that is a tempered
distribution. This case was discussed in Sec. III of I.
In general, however, the function X~(/) is bounded only
by the exponential

[ Xi (g) f

(eel tl (2.17)

and therefore does not naturally lie within the space of
tempered distributions. This fact is what led us to con-
sider the more general representation which we describe
in the following sections.

$00

f(~) = *"a(s)A (s)+ '**h(s)~p(s), ( )
'400

where g(s), h(s), and ls(s) are functions (not distribu-
tions) having properties that we shall presently explain.
The first integral, along the real axis, has the form of a
Fourier transform; the second, along the imaginary axis,
has the form of a Laplace transform. When the function

f(x) possesses an ordinary Fourier transform, the sec-
ond integral vanishes. The function Is(s) is of bounded
variation" both on the real axis and on the imaginary

"A function p(s) is of bounded variation over a region if the
Riemann-Stieltjes integral J'

~
dp(s)

~
over that region exists and is

6nite, In this case the differential dy(s) is a bounded measure and
may be expressed as dp(s) =Lf(s)+P„=s"c„s(s—s„)gds, where
f(s) is a piece-wise continuous and absolutely integrable function,
S(s) is the delta function, and the series p =s"

~
c

~
converges.

III. FOURIER TRANSFORMS FOR INFINITELY
DIFFERENTIABLE FUNCTIONS

We have seen that the weight function P(n) of the P
representation is the Fourier transform of the normally
ordered characteristic function X~($). We shall show
below that the function X&($) may always be written as
the sum of a square-integrable function and an infinitely
differentiable function. Thus, since square-integrable
functions possess square-integrable Fourier transforms,
we need only 6nd a representation for the Fourier trans-
form of the infinitely differentiable part of X&($) in
order to regularize the P representation. We discuss
such a representation in the present section.

Let us consider first, for simplicity, the representation
of the Fourier transform of an infinitely differentiable
function of one real variable. It has been shown by
Ehrenpreis that every infinitely differentiable function

f(x) may be expressed as the sum of two integrals in
the form'2

axis; and, although we have written it as one function,
it corresponds to different functions on the two axes.
The functions g(s) and h(z) have the following asymp-
totic properties: g(s) goes to zero as

~
s~ —+~ faster than

every inverse power of ~s~, and h(s) goes to zero as
~
s~ ~~ faster than exp( —M s~) for every value of the

constant M. The two integrals in Kq. (3.1) and all of
their derivatives converge uniformly for x in any
bounded set. Conversely, the sum of any two such inte-
grals represents an in6nitely differentiable function.

This theorem and its analog for functions of two real
variables, which we present at the end of this section,
are sufhcient for the derivation of the regularized P
representation. If, however, we want to have some idea
of the class of operators Ii for which the regularized P
representation leads to the correct ensemble averages
Tr(pF), then it will be necessary for us to consider how
the Parseval equality (2.3), which holds for square-
integrable functions, may be generalized to the case of
in6nitely differentiable functions. The generalized form
of Parseval's relation, which we shall now explain, will
enable us in Sec. IV to derive from Eq. (2.14) the ap-
propriate expression in terms of the regularized P repre-
sentation that replaces Eq. (2.16) for the ensemble
average Tr(pF).

Let T be a distribution defined on the space 8 of all
infinitely differentiable functions f(x) and let (T,f(x)) be
the number that T associates with f(x). Then, for every
complex number s, the function exp(its) is in 8 and the
quantity

T(s) = (T,e'**) (3.2)

is a function of s. We may regard T(s) as the Fourier
transform of the distribution T. In terms of this nota-
tion, the form of Parseval's relation corresponding to
Fq. (3.1) must be

It has been shown by Ehrenpreis" that this relation
holds for all f(x) in 8 provided the function T(s) is an
entire exponential function of slow growth, i.e., is an
entire function of s that for some constants M, e, and
Ã is bounded by

~
T(s)

~
&M(1+ ~s~)" exp(2V~Ims~). (3.4)

Such functions T(s) form a space called F'; the corre-

sponding space of distribution T, defined on 8, is
called 8'.

As a simple example of the rela, tion (3.3), let us take
T to be the eth derivative of the delta function,
T= 8t"&(x). Then T(s) = (—is)" and Kq. (3.3) reads

d"f(x)
(is) g(s)dls(s)+ (is) "h(&)da(&)

—'400

&00

(T,f(~)) = T(s)a(s)du(s)+ T(s)h(s)dp(s) (3 3)
'400
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then, on letting z=ix and m=iy and making a trans-
parent change of variables in the second term of Eq.
(4.3), we find

Xzr(u, v) = Pt(x,y) expl 2i(vx —uy))dxdy

+ Ps(x,y) expL —2(x'+y' —ux —vy) jdxdy

+ Ps(x,y) expL —2(y' —uy —ivx)$dxdy

+ P4(x,y) expL 2(—x'+vx+iuy)$dxdy, (4.5)

where the integrations over x and y extend from minus
infinity to plus infinity.

The form of the regularized P representation (1.3)
is now a consequence of this relation together with Eqs.
(2.14)—(2.16) and the generalized form (3.3) of Par-
seval's relation. We may, however, sidestep some book-
keeping, which that route toward its derivation would
involve, merely by noticing that the expression (4.5)
for X~(u,v) follows from the definition (2.13) of X~, when
the density operator p is given by

p = Pt(x,y) I x+iy&(x+iy I dxdy

+ Ps(x y) I
x iy)(x+iy I dxdy

+ Ps(*y) lx —y)(x+'yldxdy

+ P4(x,y) Iix+iy)( —ix+iy Idxdy, (4.6)

which is Eq. (1.3). The correct form for the ensemble
average of an arbitrary operator F is, therefore, from
Eq. (4.6),

Tr(pF) = Pt(rr)(el F In&der+ Ps(n)(nlF I
n&d'n—

+ Ps(x,y)(x+y I
F

I
x y)dxdy—

(z*,w*l s,w)=1. (4.14)

For an arbitrary operator F, the unique analytic ex-
tension of the function F(x,y) is given by the matrix
element

F(s,w) = (s*,w*lF
I s,w). (4.15)

When, for example, the operator P is the normally
ordered product, F(a )"tu~, then we see from Eqs.
(4.11) and (4.14) that the function F(s,w) is the
polynomial

lished a minimum class of operators F for which Eqs.
(4.6) and (4.7) are valid for all density operators p.

The two-variable form" of the condition (3.4) upon
Parseval's relation is that the function T(z,w) be an
entire function of s and m that is bounded by

I
2 (z,w) I &~(1+ I

z I+ I w
I)"

&«xpL&(IImzl+ IImwl)1 (4 g)

for some constants M, n, and Ã. In order to implement
this condition, we shall have to extend the function
(nlF lrr&, which corresponds to T(z,w), from a function
of two real variables, x= Rem and y= Imn,

F(x,y) = (x+iyl F
I x+iy), (4.9)

to a function F(s,w) of two complex variables z and w.
It will be helpful to define for every pair of complex

numbers s and m the state

(s+iw)"
lz, w&=e-l' l"' Q In&. (4.10)

n o(@=!)'»

When s and w are both real, the state Is,w& is the co-
herent state ls+iw). When s and w are complex, the
state

I s,w) and the coherent state
I s+iw) differ only by

a c number,

Isw&=exp( —-'s' —-'w'+ts Is+owl') Iz+sw&. (4.11)

If we denote the Hermitian adjoint of the state
I z,w)

by (s,wl, then we find

(z',w'
I s,w) = expl ——',(s—s'*)'

——',(w —w'*)'+i(s'*w —zw'*)j. (4.12)

When s'= 2' and m'= m, this becomes

(z)wlsw)= expl:I z+iwl r(z +z* +w +w* )g (4 13)

which shows that the state Is,w) is not in general nor-
malized except when s and w are both real. The inner
product (s*,w*l s,w) is, however, unity for all s and w:

+ P4(x,y)( ix+iy I
F lix+iy)—dxdy. (4.7) F(s,w) = (s—iw) "(s+iw)". (4.16)

Our task now is to determine the class of operators P
for which the function (nlFln) satisfies the condition
(3.4) upon ParsevaVs relation. When we have done this
and have also taken into account the additional restric-
tion upon (rr I

F
I n& due to the part of Xsr that may not

be infinitely differentiable, then we shall have estab-

Now it has been shown'" 4' that virtually every
operator F possesses a convergent normally ordered

In Refs. 8 and 18 the series (4.17) is shown to converge& in
a sense which is de6ned there and which implies the convergence
of the series (4.18),'for an extremely broad class of operators F
including, e.g., all whose occupation number matrix elements
satisfy the inequalities (N!t!m)! &3ERi"Ra (n!m!)1 ~, for some
M, R1, Rm, and e)0 and all integers n and m.
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power series expansion of the form

F= Z f-,-(a')"a",
n, m=0

(4.17)

where the f„, are c numbers. We may, therefore, assert
quite generally that the function F(z,w) corresponding
to a given operator Ii is given by the convergent" series

F(s,te) = P f., (s —iw) "(s+ite)".
n, m=o

(4»)

Since this series converges, there is no difhculty in satis-
fying the requirement that the function F(s,tt/) be an
entire function of z and m. The condition on Parseval's
relation amounts, therefore, only to the restriction that
the function F(s,w) satisfy the growth condition (4.8).4'

We note that this restriction is satisfied by the normally
ordered products, F= (at) "a, as is shown explicitly by
Eq. (4.16). Their expectation values, according to Eq.
(4.7), are given by the integrals

There are then, depending upon the nature of the
normally ordered characteristic function X/v(f), three
classes of operators for which the trace relation (4.7) is
valid. If X& is square-integrable, which is roughly equiv-
alent to the existence of the I' representation, then
F(x,y) should be square-integrable over the real xy
plane. If X/v is infinitely differentiable, then F(s,tt/)

should be entire, which is almost always true, and should
satisfy the growth condition (4.8). If, and this is the
general case, XN has neither of these properties, then
F(x,y) should be square-integrable and F(s,w) should
satisfy the growth condition (4.8). These conditions
upon the operator Ii are certainly not necessary ones
for the validity of Eq. (4.7). It would, in fact, be more
realistic to regard Eq. (4.7) as a perfectly general rela-
tion, at least for ordinary purposes. "

For most density operators the weight functions of the
general representation may be easily obtained from the
function (nl pl n) If w. e use Eq. (4.6) to form the func-
tion (pl pl p), then we may write the resulting relation
in the form

Trl p(at) "a"]= (n*)"(n)"Pi(n)d'rr

+.( 1)m (&e)n(&)me —2[a[&P (&)d2&

(pl. l p) =. (p)+"(p)+p (p)+. (p), (4.2o)

where the functions pi 4(P) are given by

pt(P) = d'~ Pt(~)e (4.21)

+ (x+y) "(x y) e '"'Ps(x—,y)dxdy

+(i)"+ (x y)"(x+y) e—'*'P4(x,y)dxdy, (4.19)

ps(P) =e [e[' d'n P2(n)es~* e*~— (4.22)

which is the general form of Eq. (1.4).
Virtually all fields of practical interest in quantum

optics are characterized by the property that the en-
semble averages Trg(at) "a j are finite for all n and m.
As we show in Appendix D, this requirement implies
that X/v($) is infinitely differentiable. In order to be
completely general, however, we must admit that the
term P.;(n), which arises when XN is not infinitely differ-
entiable, can lead to a singularity in the erst term of Eq.
(4.7) even when the analytic extension F(s,tt/) of the
function (nl Fln) satisfies the growth condition (4.8).
To avoid this difficulty we make use of the fact that the
function P„(n) is square-integrable. Thus if the function

(ul Flu. ) is also a square-integrable function of a, then
it and the function P.;(n) satisfy the usual condition
upon the standard form (2.3) of Parseval's relation. In
view of Eqs. (2.6) and (2.12), this additional restriction
upon (n l

F
l rr) is satisfied whenever the Hilbert-Schmidt

norm l Tr(FtF) )'/s of the operator F is finite, i.e., when-
ever the operator Il is of the Hilbert-Schmidt type.

p&(u, t/) =e "' dxdy P&(x,y)e""" t" ~i "', (4.23)

p4(N, s) =e "' dxdy P4(x,y)e""* ' »' *', (4.24)

(~y 1/2

e zs/r-
&r)

—2ixk—f k2e (4 25)

we may secure as the inverses to Eqs. (4.21)—(4.24) the
relations

Pt(n) =~-' ds( e~b' —~'0+I 5['

X d' pi e&~*-~*~, 4.26

where P=e+it/ and n=x+iy These . expressions are
Gaussian convolutions except for the second, which is
a simple Fourier transformation. Thus by using the
formula

4' The growth condition (4.8) upon F(s,r0) is equivalent to the
requirement that the Fourier transform of F(s,u1) be in 8', i.e.,
that the operation xiv(g) r Tr(pF) be linear and continuous. It is
therefore a mild condition.

r [ )= a811 I fd pr [p)g 11 P+lr (4.27)
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P (& y) —~—5/2ep& dP esiss+s&
R representation4

duds)() 3(u, v) e
—"('"+&")+"' (4.28)

I n)(n I ~ I P)(P I
d'nd'P

P4(x,y) =s—'~'e*' dl e+'+"

X dud()p4(u, s)e—"("+*)+"'. (4.29)

The trick, of course, is to separate properly the func-
tion (PlplP) into four parts pi 4(P) so that the four in-

tegrals (4.26)—(4.29) converge. Usually this is a simple
matter. It, for large values of lP, the function (Pl plP)
goes to zero slower than exp( —Pl'), then the proper
choice is pi(P) = (P l p l P) and ps(P) =p3(P) =p4(P) =0. In
this case the P representation exists with P(n) given by
Eq. (2.15) or (4.26). When the function (pl pip) con-
tains a part that goes to zero faster than exp( —

l pl'),
then we must identify that part with ps(P). For if we
included such a term in p&(p), then in Eq. (4.26) the
integration over the variable $ would not converge since
the Fourier transform of p&(p) would decrease less slowly
than exp( —

l
gl').

If (p l)() l p) is asymmetric and contains a part that be-
haves asymptotically like

exp( —bus —c()'),

with b(1 and c)1, then this part belongs to ps(u, s). If,
on the other hand, we have b) 1 and c(1, then the
choice is p4(u, s). The terms p3(P) and p4(P) are required
only for such asymmetries in (pl pl p). Thus when the
density operator p represents a stationary state of the
free Hamiltonian, i.e., when

l p, ata]= 0, then the func-
tion (pl pip) is a function of

l pl alone and we may set

p3(P) = p4(P) =0. In this case the density operator may
be written as

ln)(p l
Z(n*,p).—:(~-~'+~e~'~d'nd'p (4.32)

Thus the fact that the weight functional P(n) may
always be interpreted as a member of Z' implies not
that the P representation is universal but only that the
R representation is universal, which is a well-known

result. '

V. ILLUSTRATIONS OF REGULARIZED
P REPRESENTATION

In this section we illustrate the procedure for 6nding
the weight functions P~ 4 of the regularized P represen-
tation. In the two examples we consider, the functions
Pj 4 are simple and well behaved even though the func-
tional P(n) of the P representation does not exist either
as a distribution or as a tempered distribution. After
constructing the regularized P representation for these
families of density operators, we then use it to evaluate
the ensemble averages of some physically relevant
operators.

As our first example, let us consider the family of
density operators

(5.1)

in which the parameter (e) represents the mean number
of'quanta. The density operator p differs from one
describing a chaotic mixture,

1 ((u) q"

(u)+1 =o k(e)+1)

corresponding, for example, to thermal equilibrium, in
p= ln)(nlPi(n)d n+

l
n)(nlP2(n)d n, (430) that only even numbers of quanta are present in the

field described by p. If we set

p= ls,w)(s*,w*lP(s, w)d'sd'w, (4.31)

which is Eq. (1.2).
Ke shall illustrate this method for finding the weight

functions P~ 4 with the aid of specific examples in Sec.
U. Let us first, however, contrast the regularized P rep-
resentation with the sort of regularization that would be
required if we knew only that the functional P(n) were
a member of the space of ultradistributions Z'. In that
case, we would be able to conclude from the results of
Appendix A only that all density operators possess the
representation

then we may write

c'= (u)/((n)+ 2), (5.2)

C

(p I p l p) =(1—c')
(2')!

=i (1 —c2)l e
—(i—~)IPI'+e—(&+~)Iel'] (5 3)

Since 0(c(1, the first term goes to zero, as l Pl ~~,
slower than exp( —lPl') while the second decreases
more rapidly than exp( —

l P l'). Thus with

which is no more than a complicated way of writing the
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and p2(P) =p4(P) = 0, we find by using Eqs. (4.25)—(4.27) If we define the function

1—c
Trl p(at) namj

2' c
(&8)n&cnC (c —1—1) [n(cd2&

~ (-)=~.(.)=(2- )-'(1—")
X expl —(c

—' —1) I
n

I
2$ (5.4)

and P3= E'4= 0.
We may now use Eq. (1.4) or (4.19) to express the

ensemble average TrLP(at) "a j as the integral

g(P) =-p(llPI') '
&oIP&,

then by using Eq. (I2.9) we may write Eq. (5.8) as the
diff erential equation

/r r-
Ia(P),

whose solution is

+( 1)m ((28)n(2mtc
—(c 1+1)I nl cd2(2 1(r r-

a(P) =a(0) exp —I, IP'
2 kr+r ij'-

which vanishes unless n=n2 Th.us, by putting 2:=
I
nI2,

we Gnd Thus for the density operator p=
I 0) ' '

(0) the function
(Pl plP& is given by

Tr(p(at) nacc5

1—c

2c
gnl c-(c-1-1)c+( 1) nc(c +11) f(n)(z

((n&y" p 2 q
"~' —

( (n) q'~' n+'

II 1+
I 1+I

& 2 ) k (n&i E(n&+2)

2
&P lp IP&= I

&OIO)'I' exp —
I l(r24'+r '22) (5 9)
&r+r-1)

(PIPIP&~ 'd'P, (5.10)

where P= I+in. By means of the normalization
condition

( (n) ) 1/2 —n+1

+( 1) 1
I( I

' (5'5) we may secure as the value of the matrix elementE(n)+

a= (2)2) '~2(Xg+iX 'p) (S.6a)

In order to introduce our second example, let us recall
that the operators u and ut may be expressed as Thus with

I
«IO)'I'=2/lr+r 'I.

b= 2r/(r+r ')—(5.11)

and
at = (2$)—112(yg—iy—'p) (5.6b)

we have

c= 2r-'/(r+r —')

where the operators (7 and P are Hermitian and canoni-
cally conjugate, $g,p$=ifi, and where X is an arbitrary
real parameter. If we alter the scale parameter P, then
the operators

and

a'= (2h) '(2(),'(7+iX'—'p) (S.7a)

a'= (2h)
—"'(X'(7—A' 'p) (5.7b)

will have the same properties as the operators a and ct.
In particular, the operator a' possesses a complete set
of eigenstates

I
n)',

(Pl plP)= (bc)'t' exp( —bg' —ci') (5.12)

where either both 0&b& 1 and 1&c&2 or both 1&b(2
and 0(c&2. If b=c=1, then the state Io)' is the
vacuum state

I 0) and the I' representation exists with
P((2) = b(2) (n). Let us choose of the two nontrivial cases
r'&1 so that 0&6&1 and 1(c&2.Then the I' repre-
sentation does not exist and the proper separation of the
function (PIPIP) 's p2(P)= &Pl plP) and pi ——p2

——
p4

——0.
By using Eqs. (4.25) and (4.28), we find

6 A =(X G

corresponding to the coherent states Iu& for the opera-
tor a.

Let us consider the ground state
I
0)' in the primed

system. By using Eqs. (5.6) and (5.7), we find, with
r=X-9',

P2(x,y) =2r—'"(bc) 'I'ec'

=2~—ilr —r

d'/~2 irk+0&

did~ ~
—2i(ku+yv) —(c—1)v~bu2

a' t= ,'(r r ')a+-', (r+r ')at-—— —
XexpL —2(r ' —1) '(x2+y') j, (5.13)

so that we have
where r'& 1.

'&ola'"IP)=o=-;(r —~)P '&olP& For the other case, r2&1, the calculation is entirely
+2 (r+r-') ' (0I atIP). (5 8) similar, with p4(P) = (Pl plP) and p122=0. By using Eqs.
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Trt p(ut)"a $= Ps(x,y)e 2"'(x+y) "(x y) d—xdy

(x+y)"(x—y)xr —r'
2(r2x2+y2)-

Xexp — dxdy. (5.15)
(1—r')

If we restrict ourselves to the case n=m, then we may
construct a generating function for these moments by
forming the series

hn Trgp(gt)ngn)

n=O

m r —r

2(r2x2+y2)-
exp i't (x2—y') — dxdy

= (1—2N2h —I'h') '" (5.16)

where we have set 1=2 ~r —r '~ and have again used
Eq. (4.25). If we now compare this relation with the
generating function" for the Legendre polynomials
P„(z),

(1—2zt+ts)-'js=g &.P (z)
n=O

then, with the identi6cations t= —ilk and z=iN, we
find the result

Tr)p((tt) nanj =n!(—ig) "P„(il), (5.1"/)

where, again, et= 2 ~
r—r '

~. This result, which we have
derived for the case r'& 1, is the correct one for all values
of r. This conclusion may be arrived at either by recog-
nizing that both sides of Eq. (5.17) may be expressed as
analytic functions of r, except for the pole at r =0, or by
using Eqs. (4.19) and (5.14).
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(4.25) and (4.29) we find

P,(x,y) = 2~-iIr —~
Xexp L

—2(r' —1)
—'(x'+y') j (5.14)

and Pg, p, 3
——0.

For the case in which r2(1, we may use Eq. (4.19)
and the result (5.13) for P()(x,y) to write the ensemble
averages of the normally ordered products ((tt) "a in
the form

APPENDIX A

In order to view the regularized I" representation in
better perspective, we outline here for the space of ultra-
distributions Z'" the representation theorems" that
correspond to those presented in Sec. III for the space
E of distributions. The spaces 5), X)', Z, and Z' play in
this discussion the roles of the spaces 8', 8, E', and E,
respectively, in Sec. III.

The space I) consists of all infinitely differentiable
functions f(x) that are of compact support, i.e., that for
some E vanish for ~x~)E. X)' is the space of distribu-
tions de6ned on 5). Since the normally ordered charac-
teristic function XN($) is continuous, as is shown in

Appendix 8, it is in X) . The space Z consists of the
Fourier transforms of all functions f(x) in 5). The space
of ultradistributions Z' is the space of generalized func-
tions de6ned on Z. Since the Fourier transform of every
distribution T in X)' is an ultradistribution in Z', it
follows'2 that the weight function P((2) of the P repre-
sentation, being the Fourier transform of Xj)(($), is in Z'.

The analog for a distribution T in S' to the represen-
tation (3.1) for an infinitely differentiable function, i.e.,
a member of h, is a symbolic relation of the form

r(x) ffe' j(s)d p("s), ' (A1)

in which the integral over the complex z plane is two-
dimensional, j(z) is a suitable function, and t((z) is
a bounded measure on the complex plane. In the nota-
tion of Sec. III, the form of Parseval's relation corre-
sponding to Eq. (3.3) is

(r,j(*))= fj(*)j(*)d) (~), (A2)

where f(z) is the I ourier transform of the function f(x).
This relation holds for all f(x) in I) in which case the
entire function f(z) is in Z.

The principal difference between the representations
(3.1) and (A1) is that for the space E the integration
extends over two straight lines in the complex plane
while for the space Z the integration is two-dimensional.
For this reason the fact that P((2) is in Z' implies not the
existence of the P representation, nor that of the regu-
larized I' representation, but rather only the existence
of the biplanar representation (4.31) which is just the
R representation (4.32).

The two forms of Parseval's relation (3.3) and (A2)
diGer additionally in that the space Z of functions ad-
missible to (A2) is much smaller than the corresponding
space F-' for (3.3). Every f(z) in Z is an entire function
of z that is bounded, for all integers n&0, by

[ f(z) [&M„~z( "exp(E[Imz() (A3)

42 W. Magnus and F. Oberhettinger, Formltas arid Theorems for
the Fgrsctiorss of hfathematica/ Physics (Chelsea Publishing Co.,
New York, 1949), p. 51.

4' For a readable discussion of the space Z', see I. M. Gel'fand
and G. E. Shilov, Generalised PNnctions, translated by E. Saletan
(Academic Press Inc., New York, 1964), Vol. I, Chaps. I and II.
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APPENDIX 8
Our object here is to show that the normally ordered

characteristic function Xiv($) is a continuous function of

$. Let us first define the anti-normally ordered charac-
teristic function X~($) as

X~(()=Trl p exp( —pa) exp(&at) j. (B1)

By inserting (I2.8) for the identity operator between
the two exponentials in this trace, we may write Xz($)
as the Fourier transform of the function (o.'I p I

n):

xg(() = exp((n* —Pa) (o.
I p I

n)sr
—'d'n. (B2)

Now (nl pin. ), being both positive and integrable, as is
shown by Eq. (5.10), is an absolutely integrable func-
tion of lnl . Thus, since the Fourier transform of every
absolutely integrable function is continuous, it follows
that X~($), being the Fourier transform of (nl pin), is
continuous. 4' From Eqs. (I2.12) and (I2.13), we have
further

which shows that all three characteristic functions are
continuous. '

APPENDIX C

for some constants M„and Ã&0. The difference be-
tween this condition and its counterpart (3.4) has as a
significant consequence that the existence of P(cr) in Z'
allows us to compute the ensemble averages of no useful
operators. "For in place of the growth condition (4.8),
which follows from (3.4), the restriction (A3) leads to
the growth condition44

I(s*,~*I~Is,~)I&~-(1+lsl+l~l) "
&& expLX( I

Ims
I + I Imto

I )Q (A4)

for al/ integers n and some constants M„and E. This
restriction rules out not only the normally ordered prod-
ucts, F= (at) "a „but also all operators P that are not
in the trace class and, within the trace class, 4' all
dyadics, Ii = IP)(q I. The physical implications of the
existence of P(n) as an ultradistribution, i.e., in Z, are
therefore vacuous.

We actually shall prove the stronger result that the
function IXN"'($) I& is integrable not only for P=2
but for all positive p. To prove this we shall use two
simple theorems and the fact that Xiv($) is a continuous
function of f, which was shown in Appendix B.

The two theorems have to do with in6nitely differ-
entiable functions of several real variables and sets that
are closed or bounded or both, like the region

I xl &R.
The first theorem4~ is that for every continuous func-
tion f(x) there exists a sequence of infinitely differ-
entiable functions g„(x) that converges to f(x) uniformly
on any bounded region. The second theorem' is that if
8' is a closed and bounded region and U is an open
region containing W, then there exists an infinitely
differentiable function h(x) that is equal to 1 for x in
S', equal to zero for x outside of U, and bounded by 1

above and by zero below for all x.
For simplicity, we shall carry out the proof for the

case of one dimension and shall state our result as the
following theorem:

If f(x) is a continuous function on the real line, then
we may write for all x

j'(x) =g(x)+ j(*) (C2)

For each integer n we define M„by the rule

2+I j(x) l&~r„ for n —1&x&ny2. (C4)

The numbers M are all finite because f(x) is assumed

to be continuous.
Now by the second theorem there exists a sequence of

infinitely differentiable functions h„(x) such that

where the function g(x) is infinitely differentiable and
where the function j(x) has the property that the inte-

gral of
I j(x) I

s' over the real line is finite for all p) 0.
Let e„be a sequence of numbers, all less than unity

and positive, such tha, t the series P„=„"(e„)"converges
for all P)0. We might take, e.g., e =exp( —lnl —1).
Then by the first theorem there exists a sequence of in-

finitely differentiable functions g„(x) such that

I f(x)—g (x) I
&e„ for n 1&x&—n+2. (C3)

Our purpose here is to show that the normally
ordered characteristic function X&(g) may always be
decomposed into the sum of an infinitely differentiable
function X&l@($) and a square-integrable function
Xiv"i($), so that for all $

h„(x)= 1 if n&x&n+1,
h„(x)= 0 if x&n —-', (M„)—~ "~

h„(x)=0 if x&n+1+-', (M„~ )~"i+'~,

0&h„(x)&1 for all x.

(CS)

(C1) Then, by construction, the function g(x) defined by

44The class of operators Il that satisfy the growth condition
(A4) is studied in Ref. 18 where it is called O(Z). Apart from F=0,
I know of no remotely tractable examples of such operators.

4' The trace class is defined in Ref. 26 of I.
"See, e.g., S. Bochner and K. Chandrasekaran, Iiogrier Trans-

forms (Princeton University Press, Princeton, N. J., 1949),
Chap. I.

g(*)= E h-(x)g-(*)

47 Reference 43, p. 141.
48 Reference 43, p. 142.

(C6)
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is infinitely differentiable for all x. Moreover, the func-
tion j(x) defined by

(C7)

Let us first observe that the derivatives of &~(f) at
)=0 are related to the ensemble averages of the nor-
mally ordered products. By diRerentiating Eq. (2.13)
we find

is easily seen to have the required integrability property.
For, from Eqs. (C3)—(C5), we have for every I

n+1/2

gn+mX (()
(D1)

—1/2
( j(x) ("dx&(e„)&+(2+&„)i'(M„) ~ "~. (C8)

~ j(x) ~

"dx(~. (C9)

If now we sum over all integers n, then we 6nd that the
first series converges by assumption and the second by
Eq. (C4). The function

~
j(x}(

& is therefore integrable
over the real line for all p) 0,

The differentiability of Xz at )=0 consequently de-

pends upon whether these expectation values are finite.
In order to examine the differentiability of Xz for

t&0, it will be useful to consider the antinormally
ordered characteristic function Xz($), defined by Eq.
(B1).Since x~ is related to Xz by the exponential factor
exp(~ $~'), as shown by Eq. (B3), it is clear that X~ is
infinitely differentiable if and only if Xz is in6nitely
differentiable. By using Eq. (B2), we may express the
derivatives of X~ in the form

This theorem is easily generalized to the complex
plane and to Euclidean n space. In this way, since the
function X&($) is continuous, the validity of the decom-
position (C1) is established.

gn+mX (~)

gPg( P)m
)&(n(p(n)ir 'd'n —
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APPENDIX D

For most density operators of physical interest, the
expectation values of the normally ordered products
TrLp(at) a ) are all finite. In this Appendix we show
that for such density operators the normally ordered
characteristic function X~($) is infinitely differentiable.
It follows, therefore, that these expectation values,
when finite, are given correctly by Eq. (4.19) and, fur-
ther, that the requirement that the operator F be of the
Hilbert-Schmidt type may be dropped in actual physi-
cal problems, leaving the growth condition (4.8) upon
the function F(s,w) as the sole eRective restriction. 4'

Since (n~p~n) is non-negative and exp($n* —Pn) is
unimodular, these integrals converge for all values of

$ if they converge for )=0. Thus both X& and Xz are
in6nitely differentiable functions when the ensemble

averages of the antinormally ordered products which
are given by the integrals

Trygm(gt)n) = (Q+)n~ ((r
~ p ~~)ir de (D3)

are all finite. This condition is equivalent to the require-
ment that the ensemble averages of the normally
ordered products be finite, which is normally imposed as
a ground rule in actual practice.


