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General explicit formulas are derived for the first quantum-mechanical correction to the mass of a static soliton in 
a weakly-coupled two-dimensional scalar field theory. 

Microscopic processes are both quantum-mechanical 

and non-linear. In some of  them, the quantum effects 

predominate over the non-linear ones. These processes 

may be described, if the coupling is weak, by the usual 

perturbation theory which treats the non-linear inter- 

action as a perturbation of  an exactly-solved, linearized 

quantum theory. There may well exist other physical 

processes, however, in which the non-linear effects are 

more important than the quantum ones. These should 

be described by an approximation that treats the 

quantum effects as a perturbation o f  an exactly-solved, 

non-linear classical field theory [1,2]. 

Let us consider the equation o f  motion 

n 9(x,  t) + V'[¢(x,  t)] = 0 ,  (1) 

for the scalar quantum field ~ where V' = b V/b¢. If  

is expressed as the sum of  a classical field s and a 

quantum field e, then this equation of  motion breaks 

up into a non-linear one for s 

D s(x, t) + V' [s(x, t)] = 0 (2) 

and a linear one for e 

G e(x, t) + e(x, t) V" [s(x, t)] = 0 (3) 

provided quadratic and higher terms in e are ignored. 

This a.pproximation is sensible when the theory is 

weakly-coupled and when the soliton or lump s is 
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intense, e.g., proportional to an inverse power o f  the 

coupling constant, at least over a limited region of  

space. 

Several methods have been advanced recently for 

calculating the masses of  lumps [1 ,2 ] .  Some of  these 

are systematic perturbation theories; most o f  them are 

very complicated. Our purpose here is to outline a 

simpler treatment of  this problem and to derive general, 

explicitly-finite, formulas for the first quantum- 

mechanical correction to the mass of  a static lump in 

a two-dimensional scalar field theory. In contrast to 

the methods described in ref. [2],  our treatment does 

not involve collective coordinates or functional inte- 

grals. Moreover the contribution of  the zero-frequency 

mode appears in our formulas as an explicit and often 

dominant term, whereas in the other methods [2] it 

is hidden in an infinite renormalization counterterm, 

which we avoid by the use of  normal ordering. 

In order to state our formulas, let us write the 

hamiltonian corresponding to the equation o f  motion 

(1) as 

1 , 2 
H = :  f d x  {~'(x) 2 + ~¢ (x) + V[~p(x)] : (4) 

where the field ~ and its conjugate momentum ;r are 

assumed to obey canonical equal-time commutation 

relations, where the prime means space derivative, and 

where the colons denote normal ordering with respect 

to the mass m of  the lightest elementary massive meson 

of  the theory. Let h s denote the single-particle 

SchrOdinger hamiltonian 
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hs = [p2 + m 2 + U(x)] 1/2 (5) 

where U(x)  = V"[s(x)]  - m 2, and let h 0 = (p2 + m2)1/2. 

Then our formula for the mass of  the lump (s, ni) is 

M(s,  ni) = E s + ~. ni6o i + 6M s (6) 

where E s is the classical value 

es=fa " 2 ~s (x)  + V[s(x)] , (7) 

the n i are non-negative integers, the 6oi are the (positive) 

boundstate eigenvalues of  the hamiltonian h s and the 

first quantum-mechanical correction 6 M  s is the trace 

6M s = -¼ tr [(h s - ho)2/hol  (8) 

which is finite and negative and which represents a sum 

over the eigenstates o f  h s or h 0. If  the potential U(x)  

is reflectionless and if(1 + Ixl)l U(x)l is integrable, then 

this formula for 5M s reduces to a sum over the bound 

states of  h 

and the formula (9) gives for the first quantum- 

mechanical correction the value 6M s = -(3m/2rr)  

× (1 _z lr/6x/~), which is the DHN result [2].  There 

are two stable lumps in the theory at M(s,  O) = E s + 6 

and M(s,  1) = E s + 6ol + 6. The contribution of  the 

first term of  the trace (8~, corresponding to the zero- 

f o e 1 6M (0) requency m d , "s s -~ - 0 . 2 7 2  m which is 82% 

of the full correction 6M s . 

In order to derive the general formulas (6 -8 ) ,  let us 

observe that the field 6 that satisfies the equation of  

motion (3) may be expressed as 

e(x,  t) = ~ exp(-i6ont) an fn (X)  + c.c. (10) 

n x / ~ n  

where [an, a+n] = 6n, m and the sum is over all the eigen- 

states o f  h s including the continuum, the fn (X)  being 

their wave functions. Now by substituting for ~0 and 7r 

in the hamiltonian (4) the expressions ~0 = s + e and 

¢r = d and then expanding H in decreasing powers of  s, 

we find 

6M s = _ m  ~ (sin 0 i - 0 i cos Oi) (9) 
7r i 

which in this case lie in the range 0 ~< w i ~ m and the 

angle 0 i = arccos(wi /m ). The lump (s, ni), which is an 

excited state of  the lump (s, 0), is stable if ~i  n iwi  

< m .  

Before deriving these formulas, let us apply them 

to two well-known examples. The potential of  the 

harmonic (sine-Gordon) theory is V(~0) = (ma/x) 

× [1 - cos(x/-~0/m)] and the static classical lump is 

s(x)  = (4m/x/~) arctg(emx). The mass o f  the elemen- 

tary meson is m. The classical mass o f  the lump is 

E s = 8m3/X. The potential U(x)  is reflectionless and 

suitably integrable, and has only one bound state at 

6o 0 = 0. The angle 00 is 1r/2, and the formula (9) 

gives for the first quantum-mechanical correction the 

value 6 M  s = -re~n,  which is the DHN result [2]. The 

contribution o f  the first term of  the trace (8), cor- 

responding to the zero-frequency mode, is 6M~ O) = 

-0 .284  rn which is 89% of  the full correction 6M s. 

The potential of  the kink theory is V(~0) = 

(X/4)(~02 - p2/X)2. The classical static lump is s(x)  = 

0a /v~)  tanh(I.tX/X,~'). The mass m of  the elementary 

meson is x/~p. The classical mass of  the lump is E s = 

m3/3X. The potential U(x)  is reflectionless and suitably 

integrable, and has two bound states at 6o0 = 0 and 

6ol = x / ~  m/2 .  The angles 0 i are 00 = 7r/2 and 01 = ~r/6, 

+ • (11) H = E s +  ~ 6 o n  :anan" , 
n 

where cubic and higher powers of  e have been omitted. 

There is a simple linear relationship between the opera- 

tors a n and an + and those, a(k)  and a+(k), that delete 

and add the elementary meson of  mass m [3]. By using 

that relationship to respect the normal ordering of  H, 

one may express H as 

H = E s +  ~ co n a n+a n + 6 M  s (12) 
n 

where 6M s is the trace (8). 

In order to derive the formula (9), we make use of  3 

tricks that are valid when the potential U(x)  is reflec- 

tionless and when (1 + Ixl)l U(x)l is integrable. Trick 1 

[2] is that 

o o  

dk 0 1 
f dk 8(k) (13) tr(hs-h0)= ~ dk  " 

l 

Trick 2 [4] is that the phase shift 6(k) may be ex- 

pressed as the sum over bound states 

6(k)  = 2 ~ arc tg[(m/k)  sin Oil . (14) 
i 

Trick.3 [4] is that 
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f dx U(x)=-4rn ~ s i n 0 i .  
i 

(15) 

Now if  one writes the trace (8), which is finite, as the 

sum of  the two divergent terms 

1 
5Ms =-}tr(h s -  ho)-~--~ f dx U(x) dk k ~ l , ( 1 6 )  

then, after using the 3 tricks and integrating by  parts, 

without  dropping the surface terms, one arrives at 

eq. (9). 

We have benefi ted from conversations with S. Cole- 

man, J. Stern and G. ' t  Hooft. 
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