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Abstract. The hybrid form is a combination of the Rydberg potential and the London inverse-sixth-power
energy. It is accurate at all relevant distance scales and simple enough for use in all-atom simulations of
biomolecules. One may compute the parameters of the hybrid potential for the ground state of a pair of
neutral atoms from their internuclear separation, the depth and curvature of their potential at its minimum,
and from their van der Waals coefficient of dispersion C6.

PACS. 34.20.Cf Interatomic potentials and forces – 87.15.-v Biomolecules: structure and physical prop-
erties – 82.35.Pq Biopolymers, biopolymerization – 77.84.Jd Polymers; organic compounds

1 The hybrid form

Commercial molecular-modeling codes use pair potentials
chosen more for speed than for accuracy. They use the
harmonic potential

Vh(r) = −E0 +
k

2
(r − r0)2 (1)

for covalently bonded pairs of neutral atoms and the
Lennard-Jones potential [1]

VLJ (r) = E0

[(r0

r

)12

− 2
(r0

r

)6
]

(2)

for unbonded pairs. The recently introduced hybrid po-
tential [2]

V (r) = ae−b r (1 − c r) − C6

r6 + d r−6
(3)

is nearly as fast and much more accurate. It is fast enough
for use in all-atom simulations of biomolecules and accu-
rate at all biologically relevant distance scales when its
parameters are suitably chosen. How to choose them is
the focus of this paper. Formulas are derived for a, b, c,
and d in terms of the internuclear separation r0, the depth
E0 and curvature k of the potential at its minimum, and
the van der Waals coefficient C6 of the pair. The hybrid
potential therefore is applicable to pairs of neutral atoms
for which no empirical potential is available. Its eventual
incorporation into tinker [3], Amber [4], and other such
codes is a goal of this work.
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The hybrid potential is a combination of the Rydberg
formula used in spectroscopy and the London formula for
pairs of atoms. The terms involving a, b, and c were pro-
posed by Rydberg to incorporate spectroscopic data, but
were largely ignored until recently. The constant C6 is
the coefficient of the London tail. The new term d r−6

cures the London singularity. As r → 0, V (r) → a,
finite; as r → ∞, V (r) approaches the London term,
V (r) → −C6/r6. In a perturbative analysis [5], the a, b, c
terms arise in first order, and the C6 term in second order.

When fitted to spectroscopically determined potentials
for the ground states of H2, N2, O2, Ar–Ar, and Kr–Kr,
the hybrid form is four orders of magnitude more accurate
than the harmonic and Lennard-Jones potentials and five
times more accurate than the Morse [6], Varnshi [7], and
Hulburt-Hirschfelder [8] potentials [2]. It also yields accu-
rate second virial coefficients and heats of vaporization [2].
Its simplicity recommends it as a teaching tool and as a
practical form for computation.

How does one find the parameters a, b, c, and d when
an empirical potential is not available? For many pairs of
neutral atoms, spectroscopists have measured the inter-
nuclear separation r0, the well depth E0 = |V (r0)| and
curvature k = V ′′(r0) at the minimum of the potential,
and the London coefficient C6. These input parameters
are discussed in Section 2 with an emphasis on the cur-
vature k and its relation to the vibrational frequency of
the ground state and to the energy D0 needed to dissoci-
ate the ground state. Section 3 develops a rule of thumb
for the parameter d to which the hybrid form is relatively
insensitive. Section 4 derives formulas for the hybrid pa-
rameters a, b, and c in terms of r0, E0, k, C6, and d and
plots the resulting hybrid potentials for the 11 pairs H2,
N2, O2, NO, OH, I2, Li2, Na2, K2, Ar–Ar, and Kr–Kr.
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2 Input parameters

In addition to the well depth E0 = |V (r0)|, the internu-
clear separation r0 at the minimum, and the London or
van der Waals coefficient C6, the curvature k = V ′′(r0) of
the potential at r0 often is available either directly or in
the guise of the energy of dissociation D0.

Near r0, the motion of the internuclear separation r is
described by the Lagrangian

L =
1
2

µ ṙ2 − 1
2

k (r − r0)2 (4)

in which µ = m1m2/(m1 +m2) is the reduced mass of the
two atoms of mass m1 and m2. To lowest order in r − r0,
the ground state then has energy

Eg =
1
2

�ω − E0 (5)

in which ω is the (angular) vibrational frequency of the
ground state. The curvature k is related to ω by

k = µω2. (6)

In the chemical-physics literature, the depth E0 and sepa-
ration r0 are labeled De and re, and the angular frequency
ω = 2πν is expressed as a frequency ωe in inverse centime-
ters: ωe = ω/(2πc) where c is the speed of light. In these
terms and in cgs units, k = 4π2c2µω2

e . The energy of dis-
sociation is D0 = −Eg = E0 −�ω/2, and so the curvature
k = V ′′(r0) is related to the difference between it and the
well depth E0 = De by

k = 4µ(E0 − D0)2/�
2 = 4µ(De − D0)2/�

2. (7)

The values of the input parameters are listed in Table 1.
The internuclear separation r0 at the minimum of the po-
tential well V (r) and its depth E0 = V (r0) are from [9] for
H2, NO, OH, and I2, and from [10] for O2. The curvature
k = V ′′(r0) of the potential at its minimum is from [9] for
H2, O2, NO, OH, and I2. The van der Waals coefficient C6

is from [11] for H2; from [12] for NO; from [13] for OH; and
from [14] for O2, I2, Ar–Ar, and Kr–Kr. The values of r0,
E0, and k for Ar–Ar and Kr–Kr respectively are from [15,
16]. The values of r0, E0, k, and C6 for N2, Li2, Na2, and
K2 respectively are from [14,17–22].

3 A rule of thumb

The d-term of the hybrid form is a trick to avoid the 1/r6

singularity of the London term. It has no other justifica-
tion. Luckily, the quality of the fit is not sensitive to the
precise value of the parameter d, and so we need only a
good rule of thumb for that parameter. To develop an ap-
proximate formula that estimates this parameter, we first
find values of a, b, c, and d that provide good fits of the
hybrid form V (r) to empirical potentials for the 11 pairs
H2, N2, O2, NO, OH, I2, Li2, Na2, K2, Ar–Ar, and Kr–Kr
of neutral atoms.

Table 1. The depth E0 = V (r0) of the potential well V (r),
the internuclear separation r0 and the curvature k = V ′′(r0)
at the minimum r = r0, and the van der Waals coefficient C6

for 11 pairs of neutral atoms.

E0 (eV) r0 (Å) k (eV Å−2) C6 (eV Å6)
H2 4.7467 0.7417 35.8861 3.88338

14N2 9.8995 1.09768a 143.2245 14.382
O2 5.2136 1.2075 73.4726 9.3215
NO 6.609 1.1590 99.5676 11.245
OH 4.624 0.9707 48.6196 6.854
I2 1.5571 2.668 10.7378 230.05

7Li2 1.0559 2.6730 1.5752 829.33
Na2 0.74664 3.0786 1.0706 929.76
K2 0.55183 3.9243 0.61375 2328.6
Ar2 0.01234 3.757 0.0691 38.4213
Kr2 0.01735 4.017 0.0896 77.6791

a Extra digits are included to avoid round-off errors.

Table 2. The values of the coefficients a, b, c, and d that fit
the hybrid potential V (r) (Eq. (3)) to RKR data for H2, N2,
O2, NO, OH, I2, Li2, Na2, and K2 and to empirical potentials
for Ar–Ar and Kr–Kr while respecting equations (15, 17, 19,
20). The rms errors ∆V (r) for r ≥ f r0 are also listed.

a (eV) b (Å−1) c (Å−1) d (Å12) f , ∆V (eV)

H2 47.796 2.9632 2.5406 12.2 0.68, 0.086
N2 3752.644 4.3533 1.1777 34.8 0.81, 0.088
O2 2901.580 4.2173 1.0510 59.8 0.84, 0.039
NO 3809.497 4.4196 1.0943 47.0 0.81, 0.077
OH 377.804 3.6909 1.4668 32.5 0.80, 0.023

I2 14361.15 2.8013 0.4351 2.08e5b 0.88, 0.039
Li2 199.481 1.6200 0.5101 2.85e6 0.86, 0.016
Na2 231.900 1.5311 0.4292 9.40e6 0.81, 0.009
K2 325.051 1.3409 0.3269 9.94e7 0.85, 0.008
Ar2 1987.943 2.6517 0.2978 8.10e7 0.70, 0.00009
Kr2 1875.462 2.3661 0.2789 5.72e8 0.90, 0.00018

b 2.083e5 = 2.083×105 .

Empirical potentials obtained from spectroscopic
data [10,23,24] by the RKR (Rydberg [25], Klein [26],
Rees [27]) method are available from [9] for H2, NO, and
I2; from [28] for OH; from [17] for N2; from [10] for O2;
from [18] for Li2; from [19] for Na2; from [29] for K2;
from [15] for Ar–Ar; and from [16] for Kr–Kr.

Section 4 contains formulas (15, 17, 19, 20) for a, b, and
c in terms of E0, r0, k, C6, and d that ensure that the hy-
brid form V (r) goes through the minimum (r0,−E0) with
curvature k. For each pair of atoms, I found the value of
d that best fits the hybrid form V (r) to the empirical po-
tential of the pair for r ≥ f r0 in which 0 ≤ f ≤ 1. The
resulting values of a, b, c, and d are listed in Table 2 along
with the fractions f and the root-mean-square (rms) errors
∆V (r) for r ≥ f r0. Figures 1–11 show that the fitted hy-
brid forms Vf (dashes, dark blue) nicely follow the points
(diamonds, cyan) of the empirical potentials for the 11
pairs of neutral atoms H2, N2, O2, NO, OH, I2, Li2, Na2,
K2, Ar–Ar, and Kr–Kr. The fitted Vf (r)’s go through the
empirical minima with the right curvatures and closely
trace the empirical potentials, at least for r ≥ fr0. Fig-
ure 1 for molecular hydrogen adds the harmonic potential
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Fig. 1. (Color online) The hybrid form V with the calcu-
lated coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the
RKR spectral points for the ground state of molecular hydro-
gen (diamonds, cyan) and gives the correct London tail for
r > 3 Å nearly as well as does the hybrid form Vf with the
fitted coefficients (a, b, c, and d, Tab. 2) (dashes, dark blue).
In all the figures, the values of C6 used in V and Vf are from
Table 1. The harmonic form Vh (dot-dash, magenta) fits only
near the minimum.

Fig. 2. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of molecular nitrogen (di-
amonds, cyan) nearly as well as does the hybrid form Vf with
the fitted coefficients (a, b, c, and d, Tab. 2) (dashes, dark
blue). The Lennard-Jones form VLJ (dot-dash, magenta) fits
only near the minimum.

Vh (dot-dash, magenta), which fits only near the minimum
at r = r0. Figure 2 for molecular nitrogen and Figure 10
for a pair of argon atoms include the Lennard-Jones po-
tential VLJ (dot-dash, magenta), which is accurate only
near r0.

Table 3. Values of the coefficients a, b, c, and d obtained by
equations (8, 15, 17, 19, 20) from the values of E0, r0, k, and
C6 of Table 3.

a (eV) b (Å−1) c (Å−1) d (Å12) f , ∆V

H2 45.01 2.907 2.5663 16.7 0.68, 0.087
N2 4059.02 4.435 1.1762 27.7 0.81, 0.111
O2 2868.48 4.246 1.0539 40.7 0.84, 0.068
NO 4040.42 4.496 1.0946 34.0 0.81, 0.156
OH 491.96 3.942 1.4478 19.8 0.81, 0.053
I2 16125.67 2.832 0.4350 2.79e5 0.88, 0.041
Li2 148.93 1.516 0.5161 4.01e6 0.86, 0.028
Na2 278.20 1.595 0.4275 7.33e6 0.81, 0.012
K2 359.65 1.381 0.3273 7.30e7 0.85, 0.012
Ar2 4994.79 2.921 0.2959 3.12e7 0.70, 0.012
Kr2 9610.07 2.805 0.2759 6.23e7 0.90, 0.0004

Fig. 3. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of molecular oxygen (dia-
monds, cyan) nearly as well as does the hybrid form Vf with
the fitted coefficients (a, b, c, and d, Tab. 2) (dashes, dark
blue).

The fitted values of the parameter d in Table 2 are less
well defined than those of a, b, and c. The empirical rule
of thumb

d = 7.1 Å
12

+ 2.89
C3

6

E3
0 r6

0

+ 0.468
E0

eV
r13
0

Å
(8)

gives the 11 values of d listed in Table 3 and roughly ap-
proximates those of Table 2.

4 Three formulas

Suppose we use the rule (8) for the fudge-factor d and take
the London coefficient C6 from Table 1. How do we find
the parameters a, b, and c that make the hybrid potential
V (r) have its minimum at r = r0 with V (r0) = −E0 and
with curvature V ′′(r0) = k?
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Fig. 4. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of nitric oxide (diamonds,
cyan) nearly as well as does the hybrid form Vf with the fitted
coefficients (a, b, c, and d, Tab. 2) (dashes, dark blue).

Fig. 5. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of the hydroxyl radical
(diamonds, cyan) slightly less well than the hybrid form Vf

with the fitted coefficients (a, b, c, and d, Tab. 2) (dashes,
dark blue).

Let us write the hybrid form as the sum

V (r) = v(r) + w(r) (9)

of the a, b, c terms v(r)

v(r) = a e−br(1 − c r) (10)

and the C6, d terms w(r)

w(r) = − C6

r6 + d r−6
. (11)

Fig. 6. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of molecular iodine (dia-
monds, cyan) nearly as well as does the hybrid form Vf with
the fitted coefficients (a, b, c, and d, Tab. 2) (dashes, dark
blue).

Fig. 7. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of the lithium dimer (dia-
monds, cyan) nearly as well as does the hybrid form Vf with
the fitted coefficients (a, b, c, and d, Tab. 2) (dashes, dark
blue).

Since C6 and d are given, the function w(r) and its deriva-
tives

w′(r) = 6 C6 r5 r12 − d

(r12 + d)2
(12)

and

w′′(r) = −6 C6 r4 (7r12 − d)(r12 − 5d)
(r12 + d)3

(13)
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Fig. 8. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of the sodium dimer (di-
amonds, cyan) well, but not quite as well as does the hybrid
form Vf with the fitted coefficients (a, b, c, and d, Tab. 2)
(dashes, dark blue).

Fig. 9. (Color online) The hybrid form V with the calculated
coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the RKR
spectral points for the ground state of the potassium dimer
(diamonds, cyan) well, but not quite as well as does the hybrid
form Vf with the fitted coefficients (a, b, c, and d, Tab. 2)
(dashes, dark blue).

are determined. The condition that V (r0) = −E0 then is

a e−br0(1 − c r0) = −w(r0) − E0 (14)

which implies that a is

a = −(w(r0) + E0) ebr0/(1 − c r0). (15)

The condition that V ′(r0) = 0 is

a e−br0(b + c − b c r0) = w′(r0) (16)

Fig. 10. (Color online) The hybrid form V with the calcu-
lated coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the
RKR spectral points for the ground state of the argon dimer
(diamonds, cyan) nearly as well as does the hybrid form Vf

with the fitted coefficients (a, b, c, and d, Tab. 2) (dashes,
dark blue). The Lennard-Jones form VLJ fitted to the mini-
mum (dot-dash, magenta) is too low for r > 4 Å.

Fig. 11. (Color online) The hybrid form V with the calcu-
lated coefficients (a, b, c, and d, Tab. 3) (solid, red) fits the
RKR spectral points for the ground state of the krypton dimer
(diamonds, cyan) nearly as well as does the hybrid form Vf

with the fitted coefficients (a, b, c, and d, Tab. 2) (dashes,
dark blue).

which together with (15) gives b as

b = −c/(1 − c r0) − w′(r0)/(w(r0) + E0). (17)

Finally, the condition V ′′(r0) = k is

a be−br0(b − b c r0 + 2 c) = k − w′′(r0) (18)
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which with (15) for a and (17) for b is a quadratic equation
for c with roots

c =

[
r0 ±

√
(w(r0) + E0)2

w′(r0)2 + (k − w′′(r0))(w(r0) + E0)

]−1

.

(19)
The minus sign implies

c > 1/r0 ⇐⇒ 1 − c r0 < 0 (20)

while the plus sign implies

c < 1/r0 ⇐⇒ 1 − c r0 > 0. (21)

A covalently bonded pair will have v(r0) < 0, which im-
plies 1− cr0 < 0 and so c > 1/r0, which entails the minus
sign. One may choose the minus sign for the 11 pairs of
neutral atoms considered in this paper. A further discus-
sion of the choice of sign appears in the Appendix.

If one uses the rule of thumb (8) for d and the values
of r0, E0, k, and C6 from Table 1, then one may find c
from condition (19) with a choice of sign, and then b from
(17), and then a from (15). The resulting values of a, b,
c, and d for the 11 pairs of neutral atoms H2, N2, O2,
NO, OH, I2, Li2, Na2, K2, Ar–Ar, and Kr–Kr are listed
in Table 3 for the case of a minus sign in equation (19);
also shown are the rms errors ∆V (r) for r ≥ fr0 for the
f ’s of Table 2. Figures 1–11 show the hybrid form V with
these values of a, b, c, and d and with the C6’s of Table 1
as solid red curves. They closely trace the empirical po-
tentials (diamonds, cyan) and the fitted hybrid forms Vf

(dashes, dark blue).

5 Conclusions

By using equations (8, 15, 17, 19, 20), one may build an
accurate hybrid potential (3) for the ground state of a
pair of neutral atoms from their internuclear separation,
the depth and curvature of their potential at its mini-
mum, and from their van der Waals coefficient C6. The
hybrid potential therefore is applicable to pairs of neu-
tral atoms for which no empirical potential is available.
Given the differences between it and the Lennard-Jones,
harmonic, Morse, Varnshi, and Hulburt-Hirschfelder po-
tentials, it would be worthwhile to examine the conse-
quences of these differences in Monte Carlo searches for
low-energy states of biomolecules and in numerical simu-
lations of phase transitions and reactions far from equilib-
rium.

Thanks to G. Groenenboom for sending me a copy of the po-
tential of [28] and to S. Atlas, S.T.P. Boyd, H.-B. Broeker,
D. Cromer, K. Dill, M. Fleharty, S.C. Foster, R.J. Le Roy,
W.J. Meath, V.A. Parsegian, R. Pastor, R. Podgornik, E. Riley,
B. Rivers, D. Sergatskov, J. Thomas, S. Valone and W. Zemke
for advice.

Table 4. The values of the coefficients a, b, c, and d that best
fit the hybrid potential V (r) (Eq. (3)) to RKR data for Li2,
Na2, and K2 and to empirical potentials for Ar–Ar and Kr–Kr
while respecting equations (15, 17, 19) with a plus sign in (19).
∆V (r) is the rms error in V for r ≥ f r0.

a (eV) b (Å−1) c (Å−1) d (Å12) f , ∆V (eV)
Li2 1136.21 1.8218 0.3225 869.0 0.77, 0.037
Na2 648.22 1.5692 0.3034 2692.0 0.90, 0.004
K2 500.31 1.2673 0.2486 33770.0 0.70, 0.012
Ar2 1754.01 2.7054 0.2620 1.57e5 0.70, 0.001
Kr2 2725.43 2.5622 0.2485 1.0e6 0.90, 0.0003

Appendix: The choice of sign

The choice of the minus sign in equation (19) implies that
the fudge factor d must exceed a certain lower limit. The
parameter a is the value of the potential V (r) at r = 0
and so must be positive. The minus-sign inequalities (20)
imply that 1 − cr0 < 0. Thus equation (15) will give a
positive value for a only if

w(r0) + E0 > 0 (A.1)

which by (11) implies the lower limit

d >
C6 r6

0

E0
− r12

0 (A.2)

on the fudge factor d. The values of d listed in Tables 2
and 3 satisfy this constraint.

The choice of the plus sign in equation (19) implies
two upper limits on the fudge factor d. The plus-sign in-
equalities (21) imply that 1− cr0 > 0. Thus equation (15)
will give a positive value for a only if

w(r0) + E0 < 0 (A.3)

which by (11) implies the upper limit

d <
C6 r6

0

E0
− r12

0 (A.4)

on the fudge factor d. The right-hand-side of this inequal-
ity is negative for the pairs N2, O2, NO, and I2 and less
than unity for the pairs H2 and OH, as may be seen from
the values of C6, r0, and E0 listed in Table 1. Thus the
minus sign is required for the pairs N2, O2, NO, and I2
and strongly indicated for the pairs H2 and OH.

The second upper limit on d arises because both b and
c must be positive (b > 0 because v(r) must vanish as
r → ∞, and c > 0 because c < 0 implies v(r) > 0).
Thus if the positive sign is chosen in the formula (19) for
c, then 1 − cr0 > 0, and also w(r0) + E0 < 0 by (A.3),
and so equation (17) will give a positive value for b only
if w′(r0) > 0, which by (12) implies the upper limit

d < r12
0 . (A.5)

The curves displayed in Figures 1–11 all correspond to the
choice of a minus sign in equation (19). But for the five
pairs Li2, Na2, K2, Ar–Ar, and Kr–Kr, one also may get
good fits to the empirical data by using the plus sign (21).
The resulting values of a, b, c, and d appear in Table 4.
The d’s obey (A.4 and A.5).
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