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Abstract
It is hard to understand spin-one-half fields without reading Weinberg. This
paper is a pedagogical footnote to his formalism with an emphasis on the boost
matrix, spinors and Majorana fields.

1. Introduction

The construction of Majorana and Dirac fields confuses many students year after year. Those
who are not confused are likely to be those who have learned the subject from Weinberg’s
papers [1–3] or from volume one [4] of his treatise on quantum field theory. In that book,
he describes how states respond to Poincaré transformations and infers how creation and
annihilation operators transform. Then he shows that fields, which are linear combinations
of these operators, transform suitably if their coefficients, the spinors, are related to suitable
zero-momentum spinors by a ‘standard boost’ matrix D(L(p)). We cannot improve upon
Weinberg’s treatment, but we can add to it—the present paper is a long pedagogical footnote
to section 5.5 of his book [4].

In section 2, we recall his construction of spinors from the Dirac representation D(L(p))

of the standard boost L(p). In section 3, we derive for the matrix D(L(p)) the simple
expression

D(L(p)) = (m + paγ
aγ 0)√

2m(p0 + m)
(1)

which leads directly to useful matrix formulas for the spinors u(p, s) and v(p, s). We suggest
classroom use of this expression and these matrix formulas. They imply that the spinors satisfy
the Dirac equation in momentum space and the Majorana conditions, and they simplify the
evaluation of spin sums.

In section 4, we construct the Majorana field χ(x) and show that it satisfies the Majorana
condition. We use spin sums to compute its propagator and its anti-commutator with itself
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and its adjoint. We also relate it to a four-component, anti-commuting scalar-like field. In
section 5, we construct the Dirac field ψ(x) from two Majorana fields that describe particles
of the same mass, and we show that its anti-particle field is ψc = γ 2ψ∗ because its constituent
Majorana fields satisfy the Majorana condition. We discuss the propagator and the causality
and helicity properties of the Dirac field, which we relate to a complex, four-component,
anti-commuting scalar-like field. Finally, in section 6, we apply our Majorana formulas to the
Wess–Zumino model and its supercharges. The lessons of sections 4–6 are appropriate for
classroom use.

2. Relativity, causality, Majorana fields and spinors

In this section, we present a distillation for Majorana fields of Weinberg’s discussion [4] of
spin-one-half fields. This section provides the context of this paper.

The particle-annihilation

χ+
b (x) =

∫
d3p

(2π)3/2

∑
s

ub(p, s) a(p, s) eipx (2)

and particle-creation fields

χ−
b (x) =

∫
d3p

(2π)3/2

∑
s

vb(p, s) a†(p, s) e−ipx (3)

of a spin-one-half Majorana χ(x) field will transform suitably under Poincaré transformations

U(�, a)χ±
a (x)U−1(�, a) =

∑
b

Dab(�
−1)χ±

b (�x + a) (4)

if the spinors u(p, s) and v(p, s) are related to suitable zero-momentum spinors u(0, s) and
v(0, s) by a matrix Dab(L(p))

u(p, s) =
√

m/p0D(L(p)) u(0, s)
(5)

v(p, s) =
√

m/p0D(L(p)) v(0, s)

that represents the standard boost

L(p)b
0 = −pb/m (6)

that takes (m, 0) into (p0, p) in the Dirac representation of the Lorentz group, as explained in
section 5.4 of [4]. The 4 × 4 matrices D(�) of this representation are exponentials

D(�) = e
i
2 ωabJ ab

(7)

of generators of the Lorentz group

J ab = − i

4
[γ a, γ b] (8)

in which the gamma matrices satisfy the anti-commutation relations

{γ a, γ b} = 2ηab (9)

where η is the flat spacetime metric η = diag(−1, 1, 1, 1). In the Dirac representation, the
gamma matrices γ a transform as a vector

D(�)γ aD−1(�) = �b
aγ b. (10)

The fields χ±(x) will transform suitably under parity if the zero-momentum spinors
u(0, s) and v(0, s) are eigenstates of iγ 0 with eigenvalues ±1.
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Although the fields χ±
b (x) do not commute or anti-commute with their adjoints, the

Majorana field that is their sum

χb(x) =
∫

d3p

(2π)3/2

∑
s

[ub(p, s) a(p, s) eipx + vb(p, s) a†(p, s) e−ipx] (11)

will anti-commute at space-like separations both with itself and its adjoint if the operators
a
(
p,± 1

2

)
and a†(p,± 1

2

)
obey the anti-commutation relations

{a(p, s), a†(p′, s ′)} = δss ′ δ(p − p′) (12)

and

{a(p, s), a(p′, s ′)} = 0 (13)

and if the zero-momentum spinors are eigenstates of iγ 0 with opposite eigenvalues (1 and −1,
or −1 and 1) [4]. The usual choice is

iγ 0u(0, s) = u(0, s), iγ 0v(0, s) = − v(0, s). (14)

If the gamma matrices are taken to be

γ k = −i

(
0 σk

−σk 0

)
k = 1, 2, 3 (15)

and

γ 0 = −iβ = −i

(
0 I

I 0

)
, (16)

then a natural choice [4] for the zero-momentum spinors is

u

(
0,

1

2

)
= 1√

2




1
0
1
0


 , u

(
0,−1

2

)
= 1√

2




0
1
0
1


 , (17)

and

v

(
0,

1

2

)
= 1√

2




0
1
0

−1


 , v

(
0,−1

2

)
= 1√

2




−1
0
1
0


 (18)

which incidentally satisfy the Majorana conditions

u(0, s) = γ 2v∗(0, s) = γ 2v(0, s)
(19)

v(0, s) = γ 2u∗(0, s) = γ 2u(0, s).

The spatial gamma matrices are Hermitian, and the temporal one is anti-Hermitian

(γ k)† = γ k and (γ 0)† = −γ 0. (20)

The gamma matrices of even index are symmetric, and those of odd index are anti-symmetric

(γ a)� = (−1)a γ a = −γ 0γ 2γ aγ 0γ 2. (21)

The matrix γ5 is

γ5 = −iγ 0γ 1γ 2γ 3 =
(

I 0
0 −I

)
. (22)
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With a different set of γ -matrices γ a′ = Sγ aS−1, the fields and spinors should be
multiplied from the left by the matrix S. A nice feature of the chosen γ -matrices (15) and (16)
is that the Lorentz generators J ab are block diagonal, as is formula (1) for the standard boost

D(L(p)) = 1√
2m(p0 + m)

(
p0 + m − p · �σ 0

0 p0 + m + p · �σ
)

(23)

in the Dirac representation of the Lorentz group. A derivation of formula (1) for the standard
boost is given in the next section.

3. Spinors

In this section, we will find useful matrix formulas for the spinors u(p, s) and v(p, s) from their
definitions (5). The key step will be the explicit evaluation of the standard boost D(L(p)).
We then use these matrix formulas to evaluate spin sums and to show that the spinors obey
Majorana conditions and the Dirac equation in momentum space.

The standard boost D(L(p)) is [4]

D(L(p)) = D(R(p̂)D(B(|p|))D(R−1(p̂) (24)

where B(|p|) is a boost in the three-direction, and R(p̂) is a particular rotation that takes the
three-axis into the direction p̂. Thus the standard boost is a boost in the direction p̂ that takes the
four-vector (m, 0) to p. The generator of such boosts is proportional to 4iJ i0pi = [γ i, γ 0]pi

and so to p̂ · �γγ 0. So the standard boost D(L(p)) is

D(L(p)) = eαp̂·�γγ 0
(25)

in which α is a parameter whose value is constrained by the requirements (6) and (10)

D(L(p))γ 0D−1(L(p)) = eαp̂·�γγ 0
γ 0 e−αp̂·�γγ 0 = L(p)b

0γ b

= −pbγ
b/m = −pbγ

b/m. (26)

Because (αp̂ · �γγ 0)2 = α2, the gamma matrix γ 0 is transformed to

eαp̂·�γγ 0
γ 0 e−αp̂·�γγ 0 = e2αp̂·�γγ 0

γ 0

= (cosh 2α + p̂ · �γγ 0 sinh 2α)γ 0

= γ 0 cosh 2α − p̂ · �γ sinh 2α = −pbγ
b/m (27)

by the preceding equation. So cosh 2α = p0/m, whence

cosh α =
√

p0 + m

2m
(28)

and

sinh α =
√

p0 − m

2m
. (29)

Thus the standard boost D(L(p)) is

D(L(p)) = eαp̂·�γγ 0 = cosh α + p̂ · �γγ 0 sinh α

=
√

p0 + m

2m
+ p̂ · �γγ 0

√
p0 − m

2m

= (p0 + m + p · �γ γ 0)√
2m(p0 + m)

(30)
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or since (γ 0)2 = −1

D(L(p)) = (m + paγ
aγ 0)√

2m(p0 + m)
. (31)

This simple, explicit formula for the standard boost leads directly to expressions for the spinors
and their spin sums, and so we recommend its use in classrooms. It is true for any choice of
gamma matrices that satisfy {γ a, γ b} = 2ηab with η = diag(−1, 1, 1, 1).

By its definition (5) in terms of the standard boost (31), the spinor u(p, s) is

u(p, s) =
√

m

p0
D(L(p)) u(0, s) = (m + paγ

aγ 0)√
2p0(p0 + m)

u(0, s) (32)

or

u(p, s) = (m − ipaγ
a)√

2p0(p0 + m)
u(0, s) (33)

since γ 0u(0, s) = −iu(0, s) by (14).
Similarly, by its definition (5) in terms of the standard boost (31), the spinor v(p, s) is

v(p, s) =
√

m

p0
D(L(p)) v(0, s) = (m + paγ

aγ 0)√
2p0(p0 + m)

v(0, s) (34)

or

v(p, s) = (m + ipaγ
a)√

2p0(p0 + m)
v(0, s) (35)

since γ 0v(0, s) = iv(0, s) by (14).
These matrix formulas (33) and (35) for the spinors u(p, s) and v(p, s) follow from the

definition (5) of the spinors in terms of the standard boost, the expression (31) for that boost,
and from the eigenvalue equations (14). They are quite independent of the choice of gamma
matrices. For a different set of γ -matrices γ ′a = Sγ aS−1, one merely multiplies the p = 0
spinors (17) and (18) and the spinors u(p, s) and v(p, s) of equations (33) and (35) by the
matrix S, an operation under which the conditions (14) and (19) are covariant. Our derivation
of the boost formula (31) and of the matrix formulas (33) and (35) and of some of their
consequences are the main content of this paper.

The adjoints u(p, s) = iu†(p, s)γ 0 and v(p, s) = iv†(p, s)γ 0 of the spinors (33) and (35)
are

u(p, s) = u(0, s)
(m − ipaγ

a)√
2p0(p0 + m)

and v(p, s) = v(0, s)
(m + ipaγ

a)√
2p0(p0 + m)

. (36)

The transposes of the spinors (33) and (35) are by (21)

u�(p, s) = u�(0, s)
γ 0γ 2(m + ipaγ

a)γ 0γ 2√
2p0(p0 + m)

(37)

and

v�(p, s) = v�(0, s)
γ 0γ 2(m − ipaγ

a)γ 0γ 2√
2p0(p0 + m)

. (38)
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3.1. Dirac equation

These matrix formulas (33) and (35) imply that the spinors u(p, s) and v(p, s) are eigenvectors
of −ipaγ

a with eigenvalues ±m:

(ipaγ
a + m)u(p, s) = (ipaγ

a + m)
(m − ipbγ

b) u(0, s)√
2p0(p0 + m)

= (m2 + papa) u(0, s)√
2p0(p0 + m)

= 0 (39)

and

(m − ipaγ
a)v(p, s) = (m − ipaγ

a)
(m + ipaγ

a) v(0, s)√
2p0(p0 + m)

= (m2 + papa) v(0, s)√
2p0(p0 + m)

= 0. (40)

That is, they satisfy the Dirac equation in momentum space.
Thus the Majorana field (11) satisfies the Dirac equation

(γ a∂a + m)χ(x) = 0 (41)

in position space.
The adjoint spinors (36) also satisfy the Dirac equation in momentum space

u(p, s)(m + ipaγ
a) = 0 and v(p, s)(m − ipaγ

a) = 0. (42)

3.2. Majorana condition

The spinors (33) and (35) satisfy the Majorana conditions

u(p, s) = γ 2v∗(p, s) and v(p, s) = γ 2u∗(p, s) (43)

as they do (19) at p = 0.

3.3. Spin sums

The matrix formulas (33) and (35) for the spinors u(p, s) and v(p, s) simplify the evaluation
of spin sums. We start with the spin sums over the p = 0 spinors (17) and (18),

∑
s

u(0, s) u(0, s) = 1

2
(iγ 0 + I ) (44)

and ∑
s

v(0, s) v(0, s) = 1

2
(iγ 0 − I ) (45)

as well as ∑
s

u(0, s) v�(0, s) = 1

2
(I + iγ 0)γ 2 (46)

and ∑
s

v(0, s) u�(0, s) = 1

2
(I − iγ 0)γ 2. (47)
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Thus by (33), (36) and (44), the spin sum of the outer products u(p, s)u(p, s) is

∑
s

u(p, s)u(p, s) = (m − ipaγ
a) (iγ 0 + I )(m − ipbγ

b)

4p0(p0 + m)
(48)

which the gamma-matrix algebra (9) and the mass-shell relation p2 = m2 reduce to
∑

s

u(p, s)u(p, s) = m − ipaγ
a

2p0
. (49)

The spin sum with u†(p, s) = iu(p, s)γ 0 is

∑
s

u(p, s) u†(p, s) = (im + paγ
a)γ 0

2p0
. (50)

Similarly by (35), (36) and (45), the spin sum of the outer products v(p, s)v(p, s) is

∑
s

v(p, s)v(p, s) = (m + ipaγ
a) (iγ 0 − I )(m + iγ bpb)

4p0(p0 + m)
(51)

which, differing from (48) as it does by i → −i and by an overall minus sign, is
∑

s

v(p, s)v(p, s) = −m − ipaγ
a

2p0
. (52)

The spin sum with v†(p, s) = iv(p, s)γ 0 is

∑
s

v(p, s)v†(p, s) = (paγ
a − im) γ 0

2p0
. (53)

With a little more effort, one finds from (33), (46) and (38) the spin sum

∑
s

u(p, s) v�(p, s) = (m − ipaγ
a)(1 + iγ 0)γ 2γ 0γ 2(m − ipbγ

b)γ 0γ 2

4p0(p0 + m)

= (im + paγ
a)γ 0γ 2

2p0
. (54)

Similarly, the vu� spin sum follows from (35), (47) and (37),

∑
s

v(p, s) u�(p, s) = (m + ipaγ
a)(1 − iγ 0)γ 2γ 0γ 2(m + ipbγ

b)γ 0γ 2

4p0(p0 + m)

= (−im + paγ
a)γ 0γ 2

2p0
(55)

and so differs from (54) by i → −i, as it must.

3.4. Inner products of spinors

The matrix formula (33) for the spinor u(p, s), the behaviour (20) of the γ -matrices under
Hermitian conjugation and the eigenvalue relation iγ 0u(0, s) = u(0, s) (14) imply that

u†(p, s) u(p, s ′) = δss ′ . (56)

Similarly

v†(p, s) v(p, s ′) = δss ′ (57)

and u†(p, s)v(−p, s ′) = 0.
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By (14), the zero-momentum spinors u(0, s) and v(0, s ′) are eigenvectors of the Hermitian
matrix iγ 0 with eigenvalues +1 and −1. So these spinors are orthogonal, u†(0, s)v(0, s ′) = 0.
Also, ū(0, s)u(0, s ′) = u†(0, s)iγ 0u(0, s ′) = u†(0, s)u(0, s ′) = δss ′ and v̄(0, s)v(0, s ′) =
v†(0, s)iγ 0v(0, s ′) = −v†(0, s)v(0, s ′) = −δss ′ . Now iγ 0 �γ u(0, s) = −�γ iγ 0u(0, s) =
−�γ u(0, s), and so the spinors �γ u(0, s) and u(0, s ′) are eigenvectors of the Hermitian matrix
iγ 0 with different eigenvalues and so must be orthogonal, u†(0, s)�γ u(0, s ′) = 0. Similarly,
v†(0, s)�γ v(0, s ′) = 0. It follows therefore from the matrix formulas (33) for u(p, s) and (36)
for ū(p, s ′) that

ū(p, s) u(p, s ′) = m

p0
ū(0, s) u(0, s ′) = m

p0
δss ′ . (58)

Similarly

v̄(p, s) v(p, s ′) = m

p0
v̄(0, s) v(0, s ′) = − m

p0
δss ′ . (59)

Since the spinors u and v obey the Dirac equation in momentum space (39) and (40), it
follows that ū(p, s)γ a(m + ip′

bγ
b)u(p′, s ′) = 0 and ū(p, s)(m + ipbγ

b)γ au(p′, s ′) = 0. So

2mū(p, s)γ au(p′, s ′) = −iū(p, s)(pbγ
bγ a + p′

bγ
aγ b)u(p′, s ′) (60)

and since 2γ bγ a = {γ b, γ a} + [γ b, γ a] one has

ū(p, s)γ au(p′, s ′) = −i

2m
ū(p, s)

(
pa + p′a + 1

2 (pb − p′
b) [γ b, γ a]

)
u(p′, s ′) (61)

which is Gordon’s identity. Similarly,

v̄(p, s)γ av(p′, s ′) = i

2m
v̄(p, s)

(
pa + p′a + 1

2 (pb − p′
b) [γ b, γ a]

)
v(p′, s ′). (62)

3.5. Explicit formulas for spinors

The static spinors (17) and (18) and the matrix formulas (33) and (35) give explicit expressions
for the spinors at arbitrary momentum p:

u

(
p,

1

2

)
= 1

2
√

p0(p0 + m)




m + p0 − p3

−p1 − ip2

m + p0 + p3

p1 + ip2


 (63)

u

(
p,−1

2

)
= 1

2
√

p0(p0 + m)




−p1 + ip2

m + p0 + p3

p1 − ip2

m + p0 − p3


 (64)

v

(
p,

1

2

)
= 1

2
√

p0(p0 + m)




−p1 + ip2

m + p0 + p3

−p1 + ip2

−m − p0 + p3


 (65)

v

(
p,−1

2

)
= 1

2
√

p0(p0 + m)




−m − p0 + p3

p1 + ip2

m + p0 + p3

p1 + ip2


 (66)

which, as p → 0, reduce to the static spinors (17) and (18).
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3.6. Helicity

For momenta in the z-direction and in the limit of small m/p3, these formulas yield

u

(
p,

1

2

)
≈

(
1 − m

p

)



m/(2p)

0
1 + m/(2p)

0


 (67)

u

(
p,−1

2

)
≈

(
1 − m

p

)



0
1 + m/(2p)

0
m/(2p)


 (68)

v

(
p,

1

2

)
≈

(
1 − m

p

)



0
1 + m/(2p)

0
−m/(2p)


 (69)

v

(
p,−1

2

)
≈

(
1 − m

p

)



−m/(2p)

0
1 + m/(2p)

0


 (70)

in which p = |p| = p3 � 0.

4. Majorana field

In this section, we apply our spinor formulas to the Majorana field, which is simpler and more
fundamental than the Dirac field.

In terms of the annihilation and creation operators (12) and (13) and the spinors (33) and
(35), the Majorana field is

χb(x) =
∫

d3p

(2π)3/2

∑
s

[ub(p, s) a(p, s) eipx + vb(p, s) a†(p, s) e−ipx]. (71)

It satisfies the Majorana condition

χ(x) = γ 2χ∗(x) (72)

because the spinors u(p, s) and v(p, s) do (43). It obeys the Dirac equation

(γ a∂a + m)χ(x) = 0 (73)

because the spinors do so in momentum space (39) and (40).
An action density that leads to this Dirac equation is

LM = − 1
4 χ̄γ a∂aχ + 1

4 (∂aχ̄)γ aχ − 1
2mχ̄χ (74)

in which −(m/2)χ̄χ is a Majorana mass term. If there are several Majorana fields, then
the symmetry χ̄iχj = χ̄jχi = (χ̄iχj )

† implies that the matrix of coefficients mij is real and
symmetric.
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4.1. Helicity

In the limit m/p3 → 0+, we may infer from the spinor formulas (67)–(70) and from the
form (71) of the Majorana field that its upper two components annihilate particles of negative
helicity and create particles of positive helicity, while its lower two components annihilate
particles of positive helicity and create particles of negative helicity.

More generally, from the explicit spinor formulas (63)–(66) and from (71), we may infer
that particles created by the field (1 + γ5)χ are partially positively polarized, while those
created by the field χ †(1 + γ5) are partially negatively polarized. The weak charged current
selects these upper two components.

4.2. Causality

The spin sums (54) and (55) imply that the anti-commutator of two of its components is

{χa(x), χb(y)} =
∫

d3p

(2π)3

∑
s

(ua(p, s)vb(p, s) eip(x−y) + va(p, s)ub(p, s) e−ip(x−y))

=
∫

d3p

(2p0)(2π)3
[((im + γ cpc)γ

0γ 2)ab eip(x−y)

+ ((−im + γ cpc)γ
0γ 2)ab e−ip(x−y)]

= i(m − γ c∂c)ab
(x − y) (75)

in which 
(x − y) is the Lorentz-invariant function


(x − y) =
∫

d3p

(2p0)(2π)3
(eip(x−y) − e−ip(x−y)) (76)

which vanishes at space-like separations. The equal-time anti-commutator is

{χa(x), χb(y)}|x0=y0 = γ 2
ab δ(x − y). (77)

Similarly, the spin sums (49) and (52) imply that

{χa(x), χb(y)} = (m − γ c∂c)ab 
(x − y) (78)

so that the equal-time anti-commutator is

{χa(x), χb(y)}|x0=y0 = iγ 0
ab δ(x − y) (79)

or equivalently
{
χa(x), χ

†
b(y)

}∣∣
x0=y0 = δab δ(x − y). (80)

4.3. Propagator

In the usual way [4], by using the spin sums (49) and (52), one may evaluate the propagator

〈0|T {χa(x)χ̄b(y)} |0〉 =
∫

d4p

(2π)4

γ cpc + im

p2 + m2 − iε
eip(x−y). (81)
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4.4. Scalar-like field

The matrix formulas (33) and (35) imply that we may define the Majorana field χ(x) in terms
of the simpler field

φ(x) =
∫

d3p√
(2π)32p0(p0 + m)

1
2∑

s=− 1
2

[u(0, s) a(p, s) eipx + v(0, s) a†(p, s) e−ipx] (82)

as

χ(x) = (m − γ a∂a)φ(x). (83)

Because the p = 0 spinors u(0, s) and v(0, s) are independent of momentum, the field φ(x)

is like a scalar field—or like four scalar fields.
Since m2 + p2 = m2 + p2 − (p0)2 = 0, the scalar-like field φ(x) satisfies the Klein–

Gordon equation(
m2 + ∂2

0 − ∇2)φ(x) = (m2 − ηab∂a∂b)φ(x) = 0. (84)

The derivative formula (83) for the Majorana field χ(x) implies that it satisfies the Dirac
equation

(γ a∂a + m)χ(x) = (γ a∂a + m)(m − γ a∂a)φ(x)

= (m2 − γ aγ b∂a∂b)φ(x)

= (
m2 − 1

2 [γ a, γ b] + ∂a∂b

)
φ(x)

= (m2 − ηab∂a∂b)φ(x) = 0. (85)

The adjoint Majorana field χ(x) = iχ †(x)γ 0 is

χ(x) = φ(x) (m + γ a
←
∂a) (86)

in which the derivatives act to the left.

5. Dirac field

In this section, we construct a Dirac field from two Majorana fields that describe particles of
the same mass.

Suppose there are two spin-one-half particles of the same mass m described by the two
operators a1(p, s) and a2(p, s) which satisfy the anti-commutation relations{

ai(p, s), a
†
j (p

′, s ′)
} = δij δss ′δ3(p − p′). (87)

Then we have two Majorana fields

χbi(x) =
∫

d3p

(2π)3/2

∑
s

[
ub(p, s) ai(p, s) eipx + vb(p, s) a

†
i (p, s) e−ipx

]
(88)

for i = 1, 2 that satisfy the same Dirac equation

(γ a∂a + m)χi(x) = 0. (89)

So it makes sense to combine them into one Dirac field

ψ(x) = 1√
2
[χ1(x) + iχ2(x)] (90)

which satisfies the Dirac equation

(γ a∂a + m)ψ(x) = 0 (91)
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because its Majorana parts do. In terms of the same spinors (33) and (35), the Dirac field is

ψ(x) =
∫

d3p

(2π)3/2

∑
s

[u(p, s) a(p, s) eipx + v(p, s) ac †(p, s) e−ipx] (92)

with the complex operators

a(p, s) = 1√
2
[a1(p, s) + ia2(p, s)] (93)

and

ac†(p, s) = 1√
2

[
a
†
1(p, s) + ia†

2(p, s)
]
, (94)

whence

ac(p, s) = 1√
2
[a1(p, s) − ia2(p, s)]. (95)

These complex annihilation and creation operators satisfy the anti-commutation relations

{a(p, s), a(p′, s ′)} = 0 {ac(p, s), ac(p′, s ′)} = 0 (96)

and

{a(p, s), ac(p′, s ′)} = 0 {a(p, s), ac†(p′, s ′)} = 0 (97)

as well as

{a(p, s), a†(p′, s ′)} = δss ′ δ(p − p′). (98)

and

{ac(p, s), ac†(p′, s ′)} = δss ′ δ(p − p′). (99)

An action density that leads to the Dirac equation is the sum of two Majorana action
densities (74) of the same mass m

LD = LM1 + LM2 = − 1
2 ψ̄γ a∂aψ + 1

2 (∂aψ̄)γ aψ − mψ̄ψ. (100)

5.1. Anti-particle field

Because the Majorana components χ1 and χ2 of the Dirac field ψ satisfy the Majorana
condition (72), the complex conjugate field ψ∗

a (x) = ψ
†
a(x) multiplied by γ 2 is the field of

the anti-particle

ψc(x) = γ 2ψ∗(x) = γ 2 1√
2
[χ∗

1 (x) − iχ∗
2 (x)]

= 1√
2
[χ1(x) − iχ2(x)]. (101)

More explicitly, the spinors u(p, s) and v(p, s) satisfy the Majorana condition (43) according
to which they are interchanged by the operation ∗ followed by γ 2, and so these operations
turn ψ into the charge-conjugate field ψc = γ 2ψ∗

ψc(x) =
∫

d3p

(2π)3/2

∑
s

[v(p, s) a†(p, s) e−ipx + u(p, s) ac(p, s) eipx]

=
∫

d3p

(2π)3/2

∑
s

[u(p, s) ac(p, s) eipx + v(p, s) a†(p, s) e−ipx] (102)

which is the field of the anti-particle.
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5.2. Helicity

In the limit of small, positive m/p3, we may infer from the spinor formulas (67)–(70) and
from the form (92) of the Dirac field ψ that its upper two components annihilate particles
mainly of negative helicity, because of the coefficients u1(p, s) and u2(p, s), and create
anti-particles mainly of positive helicity, because of the coefficients v1(p, s) and v2(p, s).
Similarly, the upper two components of the adjoint field ψ † create particles mainly of negative
helicity, because of the coefficients u∗

1(p, s) and u∗
2(p, s), and annihilate anti-particles mainly

of positive helicity, because of the coefficients v∗
1(p, s) and v∗

2(p, s).
The factor 1 + γ5 in the charged current of the weak interaction selects the upper two

components. Thus in the decay µ− → νµ + e− + ν̄e of the muon, the field ψ
†
e creates an

electron of mainly negative helicity. The electrons from unpolarized muons mainly have
negative helicity. Similarly, in the decay µ+ → ν̄µ + e+ + νe of the positive muon, the field ψe

creates a positron of mainly positive helicity. The ν̄e and νe respectively and overwhelmingly
have positive and negative helicity.

For the same reason, electrons emitted in beta decay n → p + e + ν̄e tend to be of negative
helicity, although the factor m/|pe| need not be tiny. The ν̄e has positive helicity.

The decay of the charged pion provides another example. The π− can decay into e + ν̄e

and into µ+ ν̄µ. Since the electron is some 200 times lighter than the muon, the available phase
space of the e + ν̄e channel is 3.49 times greater than that of the µ + ν̄µ channel. So one would
expect that the dominant decay channel would be π− → e + ν̄e. Experimentally, however,
99.9877% of the decays go via the channel π− → µ + ν̄µ. Why? Well, the field ψ

†
e makes

an electron of mainly negative helicity, and the field νe creates a ν̄e of mainly positive helicity.
Now, in the rest frame of the decaying pion, the momenta of the electron and neutrino are
(equal and) opposite, and so in a final state composed of the large spinor components, their two
parallel spins would add to an angular momentum of h̄. But the pion is a pseudo-scalar meson,
and so conservation of angular momentum allows only the small me/(2pe) components of the
spinors (67)–(70) to contribute to the amplitude. This effect also slows down the principal
decay mode π− → µ + ν̄µ, but the factor mµ/(2pµ) is bigger because mµ ≈ 207me and
because pe ≈ 2.34pµ. The e + ν̄e channel is helicity suppressed relative to the µ + νµ channel
by the factor [pµme/(pemµ)]2 = 4.2 × 10−6.

5.3. Causality

The Dirac field anti-commutes with itself

{ψa(x), ψb(y)} = 0 (103)

because of the way it is constructed
√

2ψ = χ1 + iχ2 from two fields of the same mass

2{ψa(x), ψb(y)} = {χ1a(x), χ1b(y)} − {χ2a(x), χ2b(y)} = 0. (104)

The vanishing of this anti-commutator also follows from the anti-commutation
relations (96)–(99).

Similarly, the anti-commutator of ψ(x) with its adjoint ψ(x) = iψ †(x)γ 0 follows from
the anti-commutation relation (78) obeyed by its constituent Majorana fields

{ψa(x), ψb(y)} = 1
2 {χ1a(x), χ1b(y)} + 1

2 {χ2a(x), χ2b(y)}
= (m − γ c∂c)ab 
(x − y) (105)
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in which 
(x − y) is the Lorentz-invariant function (76). One also may evaluate this anti-
commutator by using the anti-commutation relations (96)–(99) and the spin sums (49) and (52)

{ψa(x), ψb(y)} =
∫

d3p

(2π)3

∑
s

(ua(p, s)ub(p, s) eip(x−y) + va(p, s)vb(p, s) e−ip(x−y))

=
∫

d3p

(2p0)(2π)3
((m − iγ cpc)ab eip(x−y) − (m + iγ cpc)ab e−ip(x−y))

= (m − γ c∂c)ab
(x − y). (106)

At equal times, 
(x − y) vanishes, and only the time derivative contributes in (106), so

{ψa(x), ψb(y)}|x0=y0 = iγ 0
ab δ(x − y) (107)

or {
ψa(x), ψ

†
b(y)

}∣∣
x0=y0 = δab δ(x − y). (108)

5.4. Propagator

Since the Dirac field is the combination (90) of Majorana fields, its propagator
〈0|T {ψa(x)ψ̄b(y)|0〉 is the same as that of a Majorana field (81) of the same mass.

5.5. Complex scalar-like field

The Dirac field also may be obtained from the scalar-like field

�(x) =
∫

d3p√
2(2π)3p0(p0 + m)

1
2∑

s=− 1
2

[u(0, s)a(p, s) eipx + v(0, s)ac†(p, s) e−ipx] (109)

as

ψ(x) = (m − γ a∂a)�(x). (110)

The field �(x) is like a scalar field because the static spinors (17) and (18) do not vary with
the momentum. It satisfies anti-commutation relations:

{�a(x),�b(y)} = 0. (111)

With this construction, the Dirac field satisfies the Dirac equation

(γ a∂a + m)ψ(x) = 0 (112)

because the field �(x) satisfies the Klein–Gordon equation, and it satisfies the anti-
commutation relations

{ψa(x), ψb(y)} = 0 (113)

because the complex scalar-like field �(x) does, equation (111). The adjoint Dirac field
ψ(x) = iψ †(x)γ 0 is related to the scalar-like field �(x) by

ψ(x) = �(x) (m + γ a
←
∂a). (114)

6. Applications to supersymmetry

The relations we have derived for Majorana and Dirac fields are useful in many contexts. As
an example of their utility, we shall in this final section use some of them to determine the
generators of supersymmetry in the Wess–Zumino model. Such supercharges play key roles
in supersymmetric field theories.
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6.1. Wess–Zumino model

If χ is a Majorana field, χ = γ 2χ∗, B a real scalar field, and C a real pseudo-scalar field, then
the action density of the Wess–Zumino model [5] is

L = − 1
2∂aB ∂aB − 1

2∂aC ∂aC − 1
4 χ̄γ a∂aχ + 1

4 (∂aχ̄)γ aχ + 1
2 (F 2 + G2)

+ m
(
FB + GC − 1

2 χ̄χ
)

+ g[F(B2 − C2) + 2GBC − χ̄(B + iγ5C)χ ] (115)

in which (−m/2)χ̄χ is a Majorana mass term. The action density L is said to be
supersymmetric because it changes only by a total divergence under the susy transformation

δB = χ̄α δC = −iχ̄γ5α

δχ = ∂a(B + iγ5C)γ aα + (F − iγ5G)α (116)

δF = −∂aχ̄ γ aα δG = i∂aχ̄γ aγ5 α

in which α is a constant anti-commuting c-number spinor that satisfies the Majorana condition
α = γ 2α∗. The change δL is a total divergence irrespective of whether the fields obey their
equations of motion. Some authors write the action density (115) and the susy transformation
(116) in terms of C ′ = −C and δC ′ = −δC.

We have written the susy transformation (116) exclusively in terms of the spinor α by
using the Majorana character of χ and of α which imply

ᾱχ = χ̄α and ᾱγ5χ = χ̄γ5α. (117)

Since γ 2(γ a)∗ = γ aγ 2, it follows from (116) that the change δχ is also Majorana

δχ = γ 2χ∗ (118)

which in turn implies both

δχ̄χ = χ̄δχ and δχ̄γ5χ = χ̄γ5δχ (119)

and with γ 2(γ a)�γ 0 = γ 0γ aγ 2 also

δχ̄γ aχ = −χ̄γ aδχ. (120)

Incidentally, δχ = δχ̄ .

6.2. Change in action density

Under the susy transformation (116), the change in the action density is

δL = {−∂aB∂aχ̄ + i∂aC∂aχ̄γ5 − 1
2 χ̄γ a∂a[∂b(B + iγ5C)γ b + (F − iγ5G)]

+ 1
2∂aχ̄γ a[∂b(B + iγ5C)γ b + (F − iγ5G)] − F∂aχ̄γ a + iG∂aχ̄γ aγ5

+ m{F χ̄ − B∂aχ̄γ a − iGχ̄γ5 + iC∂aχ̄γ aγ5

− χ̄ [∂a(B + iγ5C)γ a + (F − iγ5G)]} − gB2∂aχ̄γ a + gC2∂aχ̄γ a

+ 2gFBχ̄ + 2igFCχ̄γ5 + 2igBC∂aχ̄γ aγ5 − 2iGBχ̄γ5 + 2gGCχ̄

− 2gχ̄B[∂a(B + iγ5C)γ a + F − iγ5G]

− 2igχ̄γ5C[∂a(B + iγ5C)γ a + F − iγ5G] − gχ̄χχ̄ − gχ̄γ5χχ̄γ5
}
α. (121)

After several cancellations, δL simplifies to

δL = {−∂aB∂aχ̄ + i∂aC∂aχ̄γ5 − 1
2 χ̄γ aγ b∂a∂b(B − iγ5C) + 1

2∂aχ̄γ aγ b∂b(B − iγ5C)

− 1
2∂a(F χ̄γ a) + 1

2 i∂a(Gχ̄γ aγ5) + m[−∂a(Bχ̄γ a) + i∂a(Cχ̄γ aγ5)]

− g[∂a(χ̄(B + iγ5C)2γ a) + χ̄χχ̄ + χ̄γ5χχ̄γ5]
}
α. (122)



44 P Cahill and K Cahill

The terms that are cubic in χ cancel. To see this, we note that the Majorana condition
(72) χ = γ 2χ∗ and (γ 2)2 = 1 imply that χ∗ = γ 2χ and so that χ † = χ�(γ 2)� = χ�γ 2,
whence χ̄ = iχ †γ 0 = iχ�γ 2γ 0. It follows that

−χ̄χχ̄α = χ�
(

σ2 0
0 −σ2

)
χχ�

(
σ2 0
0 −σ2

)
α (123)

and

−χ̄γ5χχ̄γ5α = χ�
(

σ2 0
0 −σ2

)
χχ�

(
σ2 0
0 σ2

)
α. (124)

The sum of these two terms contains only products χiχjχk in which all the indices are either
1 or 2 or all are 3 or 4; all products with three different indices, like χ1χ2χ3, cancel. So
every surviving term contains a product of two identical fields χi(x)χi(x) for some i. But the
equal-time anti-commutation relation (76) (to wit, {χa(x), χb(y)} = γ 2

abδ(x − y)) implies that
such terms vanish. So the terms with three χ ’s cancel.

Next, the anti-commutation relations (9) of the gamma matrices imply that

γ aγ b∂a∂b = γ bγ a∂a∂b = (−γ aγ b + 2ηab)∂a∂b (125)

so we can write δL as the total divergence

δL = ∂aK
a (126)

of the current

Ka = [−χ̄∂a(B + iγ5C) + 1
2 χ̄γ aγ b∂b(B − iγ5C) − 1

2 χ̄γ a(F − iγ5G)

−mχ̄γ a(B − iγ5C) − gχ̄(B + iγ5C)2γ a
]
α. (127)

Thus whether or not the fields satisfy their equations of motion, the change in the Wess–
Zumino action density is a total divergence, and in this sense, the Wess–Zumino action is
supersymmetric.

6.3. Noether current

For a general action density L(φ), Lagrange’s equations

∂a

∂L(φ)

∂∂aφi

= ∂L(φ)

∂φi

(128)

and the identity δ∂aφi = ∂aδφi imply that any first-order change

δL(φ) = ∂L(φ)

∂∂aφi

δ∂aφi +
∂L(φ)

∂φi

δφi (129)

is a total divergence

δL(φ) = ∂a

(
∂L(φ)

∂∂aφi

δφi

)
= ∂aJ

a (130)

of a Noether current

J a = ∂L(φ)

∂∂aφi

δφi. (131)

The Noether current J a is conserved ∂aJ
a = 0 by the equations of motion (128), if the

action density is invariant δL = 0 to first order. The Noether current of the supersymmetry
transformation (116) is not conserved.
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6.4. Wess–Zumino Noether current

The change in the Wess–Zumino action density (115) is by (120), (130) and (131) the
divergence

δL = ∂aJ
a (132)

of the susy Noether current

J a = 1
4δχ̄γ aχ − 1

4 χ̄γ aδχ − (∂aB)δB − (∂aC)δC

= − 1
2 χ̄γ aδχ − (∂aB)δB − (∂aC)δC (133)

or

J a = [− 1
2 χ̄γ aγ b∂b(B − iγ5C) − 1

2 χ̄γ a(F − iγ5G) − χ̄∂a(B − iγ5C)
]
α. (134)

The current J a is Hermitian J
†
a = Ja as it should be, but because the change δL is a non-zero

total divergence, it is not conserved.

6.5. The susy current

Although neither the current J a nor the current Ka is conserved, by (126) and (130), the
divergence of each of them is the change δL in the action density

∂aK
a = ∂aJ

a = δL. (135)

So the difference of the two currents

Sa = Ka − J a

= χ̄γ a[γ b∂b − m − g(B − iγ5C)](B − iγ5C)α (136)

has zero divergence

∂aS
a = 0 (137)

and is conserved. This current Sa is the conserved susy current of the Wess–Zumino action.
It contains no auxiliary fields.

6.6. Supercharges

The supercharge Q̄ multiplied by the spinor α is the spatial integral of S0

Q̄α =
∫

d3x S0

=
∫

d3x χ̄γ 0[γ b∂b − m − g(B − iγ5C)](B − iγ5C)α

= −i
∫

d3x χ †[γ b∂b − m − g(B − iγ5C)](B − iγ5C)α. (138)

By inserting unity in the form I = (γ 2)2, one may show that the supercharge satisfies the
Majorana condition

Q = γ 2Q∗ (139)

so that

Q̄α = ᾱQ

= ᾱ

∫
d3x{γ a∂a(B + iγ5C) + [m + g(B − iγ5C)](B − iγ5C)}γ 0χ. (140)
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The susy transformation rules (116) may be written as

iδO(x) = [Q̄α,O(x)] = [ᾱQ,O(x)]. (141)

The change in the field B(x) is

iδB(x) = [Q̄α, B(x)]

= −i
∫

d3x ′ χ †γ 0[∂0B(x ′), B(x)]α (142)

which the equal-time commutation relation [B(x), ∂0B(x ′)] = iδ(x − x′) reduces to

iδB(x) = −i
∫

d3x ′ χ †γ 0(−i)δ(x − x′) = iχ̄α (143)

in agreement with (116). Similarly, the change in C(x) is

iδC(x) = [Q̄α, C(x)]

= −i
∫

d3x ′ χ †γ 0(−iγ5)[∂0C(x ′), C(x)]α = χ̄γ5α (144)

as in (116).
By (141), the change in χ is

iδχa(x) = [Q̄α, χa(x)]

= i
∫

d3x ′ {χ †(x ′), χa(x)}[γ b∂b − m − g(B − iγ5C)](B − iγ5C)α (145)

and so since
{
χ

†
b(x

′), χa(x)
} = δabδ(x − x′) (the equal-time anti-commutation relation (80)),

δχ is

δχ = [γ b∂b − m − g(B − iγ5C)](B − iγ5C)α. (146)

The auxiliary fields F and G occur quadratically and without their derivatives in the action
density (115); their field equations are

F = −mB − g(B2 − C2) (147)

and

G = −mC − 2gBC. (148)

In terms of them, the change in χ is

δχ = ∂a(B + iγ5C)γ aα + (F − iγ5G)α (149)

as in (116).
The supercharges (138) and (141) obey the anti-commutation relation

{Qa, Q̄b} = −2iPcγ
c
ab (150)

which is a fundamental property of the algebra of supersymmetric theories with a single
Majorana supercharge.

The supercharges Qf of the free theory are given by (138) or (141) with g = 0. Because
the spinors u(p, s) and v(p, s) satisfy the Dirac equation in momentum space (39) and (40),
one may write Qf as

Qf = i
∫

d3p
√

2p0

1
2∑

s=− 1
2

[(b(p) − iγ5c(p))v(p, s)a†(p, s)

− (b†(p) − iγ5c
†(p))u(p, s)a(p, s)] (151)

from which it is clear that they annihilate the vacuum of the free theory

Qf a|0〉 = 0 (152)

as they must since supersymmetry is unbroken and the energy of the ground state |0〉 is zero
in the free theory.
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