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Abstract
This paper reviews how a two-state, spin-one-half system transforms under
rotations. It then uses that knowledge to explain how momentum-zero, spin-
one-half annihilation and creation operators transform under rotations. The
paper then explains how a spin-one-half field transforms under rotations. The
momentum-zero spinors are found from the way spin-one-half systems trans-
form under rotations and from the Dirac equation. Once the momentum-zero
spinors are known, the Dirac equation immediately yields the spinors at finite
momentum. The paper then shows that with these spinors, a Dirac field trans-
forms appropriately under charge conjugation, parity, and time reversal. The
paper also describes how a Dirac field may be decomposed either into two
4-component Majorana fields or into a 2-component left-handed field and a
2-component right-handed field. Wigner rotations and Weinberg’s derivation
of the properties of spinors are also discussed.

Keywords: spinors, Dirac fields, Majorana fields, two-component fields, rota-
tions and boosts, P, C, T

1. Introduction

A four-component, spin-one-half field invented by Dirac describes the guarks and leptons of
the standard model. Dirac fields are therefore of enormous importance in particle physics
as well as in nuclear and atomic physics, and in cosmology. Nearly a century has passed
since Dirac’s original description of spin-one-half fields. One therefore might expect that
they would be explained clearly and thoroughly in all modern textbooks on quantum field
theory.

Not quite. All modern textbooks on quantum field theory describe to some extent the anni-
hilation operator a (p, s), which deletes a particle of momentum p and spin s, and the creation
operator a†

c(p, s), which adds an antiparticle of momentum p and spin s. They all get the 2π’s
and the phase factors e±ip·x right and provide for the Dirac field a formula like
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ψD(x) =
∑

s=±1/2

∫
d3 p

(2π)3/2

[
uD(p, s) eip·x a(p, s) + vD(p, s) e−ip·x a†

c(p, s)
]

(1)

in which p · x = p · x− p0t, p0 =
√

p2 + m2, � = c = 1, and Dirac’s index D runs from 1 to
4. But three of the leading textbooks on quantum field theory [1–3] give incorrect formulas
for the spinors vD(p, s) that multiply creation operators. And only five [4–8] of the 15 leading
textbooks give explicit, correct formulas for the spinors.

The only book that fully explains what spinors are and that derives formulas for them is The
Quantum Theory of Fields I by Steven Weinberg [8]. His treatment of this and other topics is
so deep and so general, however, that he had to skip many intermediate steps to avoid having
his book run to several thousand pages. The paper [9] by Peter Cahill and me fills in some of
these steps.

My purpose in this paper is to point out that one may use the Dirac equation and elemen-
tary quantum mechanics, specifically how the states of a spin-one-half system of momen-
tum zero transform under rotations, to derive explicit formulas for the spinors uD(p, s) and
vD(p, s).

The Dirac equation in momentum space yields the spinors at finite momentum uD(p, s) and
vD(p, s) once we know the spinors at momentum zero uD(0, s) and vD(0, s), but it does not
tell us what the spinors are at momentum zero. It merely tells us that the spinors uD(0, s) are
eigenstates of γ0 with eigenvalue −i, and that the spinors vD(0, s) are eigenstates of γ0 with
eigenvalue i. But the eigenvalues −i and i are degenerate; each has two eigenvectors. It is the
way a nonrelativistic spin-one-half system transforms under rotations that tells us both which
of the degenerate eigenvectors of γ0 with eigenvalue −i is uD(0, 1

2 ) and which is uD(0,− 1
2 ),

and also which of the degenerate eigenvectors of γ0 with eigenvalue i is vD(0, 1
2 ) and which

is vD(0,− 1
2 ). The Dirac equation then immediately gives us the spinors at finite momentum

uD(p, s) and vD(p, s). This derivation is the simplest one I know of and the one that most reflects
the way spin-one-half systems behave under rotations.

Some of the notation used in this paper and elsewhere is described in section 2. Section 3
reviews how the Pauli matrices represent rotations of nonrelativistic, spin-one-half systems.
This knowledge is applied in section 4 to two nonrelativistic, spin-one-half systems: the
momentum-zero annihilation operators a(0, s) for s = ± 1

2 and the momentum-zero antiparticle

creation operators a†
c(0, s). This understanding of how spin-one-half creation and annihila-

tion operators of momentum zero transform under rotations is used in section 5 to explain
how rotations about the z axis transform the two 2-component fields that make up a 4-
component Dirac field and to determine their momentum-zero, 2-component spinors uα(0, s)
and vα(0, s) for α = 1, 2. The Dirac equation in momentum space at momentum zero is
used in section 6 to determine how the four momentum-zero 2-component spinors uα(0, s)
and vα(0, s) are combined into two momentum-zero, 4-component Dirac spinors uD(0, s)
and vD(0, s). Section 7 shows how to use the Dirac equation in momentum space to deter-
mine the 4-component Dirac spinors uD(p, s) and vD(p, s) at momentum p from the spinors
uD(0, s) and vD(0, s) at momentum zero. These Sections are aimed at students who have had a
good course in quantum mechanics at the level of the book Modern Quantum Mechanics by
Sakurai [10].

The two 2-component fields that make up a 4-component Dirac field transform the same
way under rotations but differently under Lorentz boosts. Section 8 explains why these 2-
component fields are called left handed and right handed and why at high momentum left-
handed fields annihilate particles whose momenta are antiparallel to their spins and create
antiparticles whose momenta are parallel to their spins while right-handed fields annihilate
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particles whose momenta are parallel to their spins and create antiparticles whose momenta
are antiparallel to their spins. This section and the three appendices that follow it are at the
graduate level.

Appendix A uses the properties of spinors as explained in sections 6 and 7 to derive the
behavior of a Dirac field under parity, charge conjugation, and time reversal. Appendix B
shows that the requirement that a Dirac field transform properly under Lorentz trans-
formations determines the spinors. Appendix C describes Majorana and 2-component
fields.

2. Notation

This section describes some symbols used in this paper and others that are merely worth
knowing.

Spin one-half. When measured along any axis, the spin of a spin-one-half particle is ±�/2.
Units. � = c = 1.
Kronecker delta. The Kronecker delta is

δs,s′ =

{
1 if s = s′

0 if s �= s′
. (2)

Metric. The metric of flat spacetime is the 4 × 4 diagonal matrix η

η =

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (3)

Its elements are η00 = η00 = −1, and ηik = ηik = δik for i, k = 1, 2, 3 with ηi0 = ηi0 = η0i =
η0i = 0. Many authors use −η instead.

4-vectors. The 4-vectors of position and momentum are x = (x0, x1, x2, x3) = (t, x) and
p = (p0, p1, p2, p3) = (E, p). With lowered indexes, they are (x0, x1, x2, x3) = (−t, x) and
(p0, p1, p2, p3) = (−E, p).

Summation convention. A repeated index often is meant to be summed over, as in

p · x = pixi = pix
i =

3∑
i=0

pi xi = p · x− p0x0 and xi = ηik xk. (4)

Dirac delta function. The functional δ(x − y) maps the function f(x) to the number f(y)

f (y) =
∫

dx f (x) δ(x − y). (5)

Dirac notation. A state that represents a particle of kind n, momentum p, and spin s in the
z direction called a ket and is written as |p, s, n〉. The Hermitian adjoint of the ket |p ′, s′, n′〉 is
the bra 〈p′, s′, n′|. Their inner product is 〈p′, s′, n′|p, s, n〉 = δ(3)(p− p′)δs,s′δnn′ .

d3 p. The differential d3 p is dpxdpydpz or equivalently dp1dp2dp3.
Annihilation operator. The annihilation operators a(p, s) and ac(p, s) respectively delete

from a state either a particle or an antiparticle of momentum p and spin s in the z direc-
tion. The energy of the particle or antiparticle is p0 =

√
p2 + m2 where m > 0 is the
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mass of the particle. All the annihilation operators of a field delete particles of the same
mass.

Creation operator. The creation operators a†(p, s) and a†
c(p, s) respectively add to a state

either a particle or an antiparticle of momentum p and spin s in the z direction. The energy of
the particle or antiparticle is p0 =

√
p2 + m2 where m > 0 is the mass of the particle. All the

creation operators of a field add particles of the same mass.
Spinors. The spinor uD(p, s) has four components, D = 1, 2, 3, 4. It is the coefficient of the

annihilation operator a(p, s) in the Fourier expansion (1) of a Dirac field. The spinor vD(p, s)
has four components, D = 1, 2, 3, 4. It is the coefficient of the creation operator a†(p, s) in the
Fourier expansion (1) of a Dirac field.

Dirac field. The Dirac field (1) has four components D = 1, 2, 3, 4. It is composed of two
2-component fields that transform the same way under rotations but differently under Lorentz
boosts.

Momentum operator. The Hermitian 3-vector P is the momentum operator.
Spin operator. The Hermitian 3-vector S is the spin operator.
Orbital angular-momentum operator. The Hermitian 3-vector L is the orbital angular-

momentum operator.
Angular-momentum operator. The angular-momentum operator is J = L + S.
Ket |p, s〉. The ket |p, s〉 is an eigenvector of P with eigenvalue p and of Sz with eigenvalue

s, so P|p, s〉 = p|p, s〉 and Sz|p, s〉 = s|p, s〉.
Rotations. An active, right-handed rotation Rθ is a 3 × 3 orthogonal matrix that rotates

3-vectors by θ radians about the axis θ̂ in the right-handed way. For instance, a right-handed
rotation by π/2 about the ŷ axis takes the 3-vector ẑ into x̂.

Rotation operator. The operator that represents an active, right-handed rotation of θ radians
about the axis θ̂ is the unitary operator U(Rθ) = exp(−iθ · J). So the operator that represents
an active, right-handed rotation of θ radians about the axis ẑ is the unitary operator U(Rθẑ) =
exp(−iθJz).

Pauli matrices. The Pauli matrices are the three 2 × 2 Hermitian matrices

σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
, and σ3 = σz =

(
1 0
0 −1

)
.

(6)

They satisfy σiσ j = δi j + iεijkσk.
Commutators and anticommutators. The commutator of two operators A and B is

[A, B] ≡ AB − BA; their anticommutator is {A, B} ≡ AB + BA.
Gamma matrices. Dirac’s gamma matrices are any set of four 4 × 4 matrices γ i that satisfy

the anticommutation relation {γi, γk} ≡ γ iγk + γkγ i = 2ηik. The ones used in this paper are
those of Weyl and Weinberg [11]

γ0 = −i

(
0 1
1 0

)
and γ i = −i

(
0 σi

−σi 0

)
. (7)

They have an extra factor of i because I use the metric (−1,+1,+1,+1). Every nonsingular
4 × 4 matrix S yields another set of gamma matrices γ ′i = SγiS−1 that obey the condition
{γ ′i, γ ′k} = 2ηik.

Equal-time anticommutation relations. A Dirac field obeys the equal-time anticommuta-
tion relations {ψD(t, x),ψD′(t, y)} = 0 and {ψD(t, x),ψ†

D′(t, y)} = δ(x− y) δD,D′ .
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3. Rotations of states of zero momentum and spin one-half

The two states of a spin-one-half particle of momentum zero transform under rotations like
the spin-one-half systems of nonrelativistic quantum mechanics as discussed in, for example,
chapter 3 of the book by Sakurai [10]. This section reviews some details that will be used in
later sections.

A spin-one-half particle of momentum p= 0 and spin s = ± 1
2 in the z direction is repre-

sented by a state |0, s〉 that is an eigenstate of the momentum operator P and of the z compo-
nent Sz of the spin part S of the angular-momentum operator J = L + S with eigenvalues 0
and s

P|0, s〉 = 0 and Sz|0, s〉 = s|0, s〉. (8)

The operator L is the orbital part of the angular-momentum operator J = L + S.
The spin operator S is represented in terms of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
. (9)

as

S =
�

2
σ =

σ

2
or 〈s′|Si|s〉 =

1
2

(Si)s′ ,s. (10)

A right-handed, active rotation Rθ of θ = |θ| radians about the axis θ̂ is represented by
the unitary operator e−iθ·J = e−iθ·(L+S). When the momentum is zero, this rotation leaves the
momentum p= 0 unchanged. So the total angular-momentum operator J = L + S and the spin
angular-momentum operator S have the same effect on a state |0, s〉 of momentum zero. They
both rotate the state |0, s〉 to a linear combination of the two spin states |0,± 1

2 〉

e−iθ·J|0, s〉 = e−iθ·S|0, s〉 =
1
2∑

s′=− 1
2

|0, s′〉〈s′|e−iθ·S|s〉

=

1
2∑

s′=− 1
2

[
e−iθ·σ/2

]
s′s
|0, s′〉 =

1
2∑

s′=− 1
2

Ds′s(Rθ) |0, s′〉 (11)

in which

I =

1
2∑

s′=− 1
2

|s′〉〈s′| (12)

is the identity operator and

Ds′s(Rθ) = 〈s′|e−iθ·S|s〉 =
[
e−iθ·σ/2

]
s′s

(13)

is the 2 × 2 unitary matrix that represents the rotation Rθ.
The identity

σiσ j = δi j + i
3∑

k=1

εi jkσk (14)

5
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implies that (θ · σ)2 = θ · θ which one may use to show that the SU(2) matrix Ds′s(Rθ) =[
e−iθ·σ/2

]
s′s is a trigonometric combination of the Pauli matrices

Ds′s(Rθ) = δs′s cos(θ/2) − i(θ̂ · σ)s′s sin(θ/2). (15)

For example, a rotation about the ẑ axis by angle θ is represented by the 2 × 2 matrix

D(Rθẑ) = e−iθσz/2 = I cos(θ/2) − iσz sin(θ/2) =

(
e−iθ 0

0 eiθ

)
, (16)

and so

e−iθJz |0, s〉 = e−iθSz |0, s〉 = e−iθs/2|0, s〉. (17)

Similarly, a rotation by π about the y axis is represented by the 2 × 2 matrix

D(Rπ ŷ) = e−iπσy/2 = I cos(π/2) − iσy sin(π/2) = −iσy =

(
0 −1
1 0

)
, (18)

and so

e−iπJy |0, 1
2 〉 = e−iπSy |0, 1

2 〉 = |0,− 1
2 〉

e−iπJy |0, 1
2 〉 = e−iπSy |0,− 1

2 〉 = −|0, 1
2〉,

(19)

while a rotation by π about the x axis is represented by the 2 × 2 matrix

D(Rπ x̂) = e−iπσx/2 = I cos(π/2) − iσx sin(π/2) = −iσx =

(
0 −i
−i 0

)
(20)

which implies that

e−iπJx |0, 1
2 〉 = e−iπSx |0, 1

2〉 = −i|0,− 1
2〉

e−iπJx |0, 1
2 〉 = e−iπSx |0,− 1

2 〉 = −i|0, 1
2〉.

(21)

4. Rotations of spin-one-half creation and annihilation operators of
momentum zero

The creation and annihilation operators of a spin-one-half particle of momentum zero transform
under rotations like the two states of the spin-one-half systems reviewed in section 3.

The state |0, s〉 of a spin-one-half particle of momentum zero and spin s = ± 1
2 is formed

from the vacuum state |0〉 by the creation operator a†(0, s)

a†(0, s) |0〉 = |0, s〉. (22)

Similarly, the antiparticle creation operator a†
c(0, s) adds an antiparticle of momentum 0 and

spin s to the vacuum state

a†
c(0, s) |0〉 = |0, s〉c. (23)
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We have seen (17) that a right-handed rotation about the ẑ axis by angle θ takes the state
|0, s〉 to e−isθ|0, s〉, so we find

e−iθJz a†(0, s) |0〉 = e−iθJz |0, s〉 = e−isθ |0, s〉 = e−isθ a†(0, s) |0〉 (24)

and similarly

e−iθJz a†
c(0, s) |0〉 = e−iθJz |0, s〉c = e−isθ |0, s〉c = e−isθ a†

c(0, s) |0〉c. (25)

In the flat space-time of quantum field theory, the vacuum is invariant under rotations, so

eiθJz |0〉 = |0〉. (26)

Thus we can rewrite equations (24) and (25) as

e−iθJz a†(0, s) eiθJz |0〉 = e−isθ a†(0, s) |0〉

e−iθJz a†
c(0, s) eiθJz |0〉 = e−isθ a†

c(0, s) |0〉.
(27)

Replacing the vacuum state |0〉 by an arbitrary state |ψ〉 and repeating the last few steps, we
see that a z rotation changes the creation operators a†(0, s) and a†

c(0, s) to

e−iθJz a†(0, s) eiθJz = e−isθ a†(0, s)

e−iθJz a†
c(0, s) eiθJz = e−isθ a†

c(0, s).
(28)

The adjoints of these equations are

e−iθJz a(0, s)eiθJz = eisθa(0, s)

e−iθJz ac(0, s)eiθJz = eisθac(0, s)
(29)

Under rotations, creation and annihilation operators transform with opposite phases. That’s
why the u(0, s) spinors that multiply annihilation operators are and different from the v(0, s)
spinors that multiply creation operators.

If instead of the z axis, the rotation is about an arbitrary axis θ̂, then the equations that
replace (28) and (29) are

e−iθ·Ja(0, s)eiθ·J =
∑

s′
D∗

s′s(Rθ) a(0, s′) =
∑

s′
D−1

ss′ (Rθ) a(0, s′)

e−iθ·Ja†
c(0, s) eiθ·J =

∑
s′

Ds′s(Rθ) a†
c(0, s′) =

∑
s′

D∗−1
ss′ (Rθ) a†

c(0, s′).
(30)

In particular, a rotation by π about the y axis changes a(0, s) and a†
c(0, s) to

e−iπJy a(0, s)eiπJy =
∑

s′
D∗

s′s(Rπ ŷ) a(0, s′) =
∑

s′
D−1

ss′ (Rπ ŷ) a(0, s′)

e−iπJy a†
c(0, s) eiπJy =

∑
s′

Ds′s(Rπ ŷ) a†
c(0, s′) =

∑
s′

D∗−1
ss′ (Rπ ŷ) a†

c(0, s′).
(31)

That is,
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e−iπJy

⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ eiπJy =

(
0 1
−1 0

)⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎝a(0,−1

2
)

−a(0,
1
2

)

⎞
⎟⎠ (32)

and

e−iπJy

⎛
⎜⎝ a†

c(0,
1
2

)

a†
c(0,−1

2
)

⎞
⎟⎠ eiπJy =

(
0 1
−1 0

)⎛
⎜⎝ a†

c(0,
1
2

)

a†
c(0,−1

2
)

⎞
⎟⎠ =

⎛
⎜⎝a†

c(0,−1
2

)

−a†
c(0,

1
2

)

⎞
⎟⎠ . (33)

And a rotation by π about the x axis changes a(0, s) and a†
c(0, s) to

e−iπJx a(0, s)eiπJx =
∑

s′
D∗

s′s(Rπ x̂) a(0, s′) =
∑

s′
D−1

ss′ (Rπ x̂) a(0, s′)

e−iπJx a†
c(0, s) eiπJx =

∑
s′

Ds′s(Rπ x̂) a†
c(0, s′) =

∑
s′

D∗−1
ss′ (Rπ x̂) a†

c(0, s′).
(34)

That is,

e−iπJx

⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ eiπJx =

(
0 i
i 0

)⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎝ia(0,−1

2
)

ia(0,
1
2

)

⎞
⎟⎠ (35)

and

e−iπJx

⎛
⎜⎝ a†(0,

1
2

)

a†(0,−1
2

)

⎞
⎟⎠ eiπJx =

(
0 −i
−i 0

)⎛
⎜⎝ a†(0,

1
2

)

a†(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎝−ia†(0,−1

2
)

−ia†(0,
1
2

).

⎞
⎟⎠

(36)

5. Rotations of two-component spin-one-half fields

A Dirac field is made of two 2-component spin-one-half fields that transform the same
way under rotations but differently under Lorentz boosts. This section explains how these
2-component spin-one-half fields transform under rotations and derives formulas for their
2-component spinors at momentum zero.

Like the upper or lower two components of the Fourier expansion (1) of a four-
component spin-one-half field, the Fourier expansion of a two-component spin-one-half
field is

ψα(x) =
∑

s=±1/2

∫
d3 p

(2π)3/2

[
uα(p, s) eip·x a(p, s) + vα(p, s) e−ip·x a†

c(p, s)
]

(37)

in which α = 1, 2 and p · x = p · x− p0t with p0 =
√

p2 + m2.
Under a rotation Rθ represented by the matrix D(Rθ) = e−iθ·σ/2 of equation (15), a

2-component spin-one-half field ψα(x) transforms as

8
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U(Rθ)ψα(x)U−1(Rθ) = e−iπJxψα(x)eiπJx =

2∑
β=1

Dαβ(R−1
θ )ψβ(Rθx)

=

2∑
β=1

(
ei 1

2 θ·σ
)
αβ
ψβ(Rθx). (38)

This equation may be taken as part of the definition of a spin-one-half field, another part being
how the field transforms (100) under Lorentz transformations that are not simple rotations. But
because the effects of rotations can be confusing, I will sketch one aspect of this equation (38)
by writing its mean value in some state |W〉 of the world as

〈W|U(Rθ)ψ(x)U−1(Rθ)|W〉 = 〈R−1W|ψ(x)|R−1W〉 = D(R−1)〈W|ψ(Rx)|W〉.

(39)

Apart from the matrix D(R−1), this equation says that the mean value of the field at x in a world
rotated by R−1 is the same as its mean value at Rx in an unrotated world. But the field ψ is a
vector whose mean value depends upon the world. So in a world rotated by R−1, its mean value
is rotated by R−1.

The matrix D(Rθẑ) that represents a rotation about the z axis (16) is diagonal because σz is
diagonal

D(Rθẑ) = e−iθσz =

(
e−iθ 0

0 eiθ

)
. (40)

So under a rotation about the θ = θẑ axis, the field ψα(x) transforms as

U(Rθẑ)ψα(x)U−1(Rθẑ) = e−iθJzψα(x) eiθJz =

2∑
β=1

exp (i
1
2
θσz)αβψβ(Rθẑx). (41)

We are after the spinors at momentum zero, so we need pay attention only to the momentum-
zero part ψ0

α(x)(x) of the field. We also can distinguish between the annihilator part ψ(0,+)
α (x)

and the creator part ψ(0,−)
α (x). Apart from the factors of 2π, the momentum-zero, annihilator

part ψ(0,+)
α (x) at x = 0 is

(
ψ(0,+)

1 (0)
ψ(0,+)

2 (0)

)
=

⎛
⎜⎝u1(0,

1
2

)

u2(0,
1
2

)

⎞
⎟⎠ a(0,

1
2

) +

⎛
⎜⎝u1(0,−1

2
)

u2(0,−1
2

)

⎞
⎟⎠ a(0,−1

2
). (42)

The formula (38) for how the field ψα(x) transforms under the rotation Rθ simplifies for the
momentum-zero, annihilator part ψ(0,+)

α (x) at x = 0 to

ei 1
2 θ·σ ψ(0,+)(0) = e−i 1

2 θ·σψ(0,+)(0)ei 1
2 θ·σ. (43)

For a rotation about the z axis, this is more explicitly

9
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(
eiθ/2 0

0 e−iθ/2

)⎡
⎢⎣
⎛
⎜⎝u1(0,

1
2

)

u2(0,
1
2

)

⎞
⎟⎠ a(0,

1
2

) +

⎛
⎜⎝u1(0,−1

2
)

u2(0,−1
2

)

⎞
⎟⎠ a(0,−1

2
)

⎤
⎥⎦

=

⎛
⎜⎝ eiθ/2 u1(0,

1
2

)

e−iθ/2 u2(0,
1
2

)

⎞
⎟⎠ a(0,

1
2

) +

⎛
⎜⎝ eiθ/2 u1(0,−1

2
)

e−iθ/2 u2(0,−1
2

)

⎞
⎟⎠ a(0,−1

2
)

=

⎛
⎜⎝u1(0,

1
2

)

u2(0,
1
2

)

⎞
⎟⎠ eiθ/2 a(0,

1
2

) +

⎛
⎜⎝u1(0,−1

2
)

u2(0,−1
2

)

⎞
⎟⎠ e−iθ/2 a(0,−1

2
). (44)

We see that the momentum-zero 2-spinors are

u(0,
1
2

) = c+

(
1
0

)
and u(0,−1

2
) = c−

(
0
1

)
(45)

as one would have expected without the present derivation.
Apart from the factors of 2π, the momentum-zero, creator part ψ(0,−)

α (x) at x = 0 is

(
ψ(0,−)

1 (0)
ψ(0,−)

2 (0)

)
=

⎛
⎜⎝v1(0,

1
2

)

v2(0,
1
2

)

⎞
⎟⎠ a†

c(0,
1
2

) +

⎛
⎜⎝v1(0,−1

2
)

v2(0,−1
2

)

⎞
⎟⎠ a†

c(0,−1
2

). (46)

The formula (38) for how the field ψα(x) transforms under the rotation Rθ simplifies for the
momentum-zero, creator part ψ(0,−)

α (x) at x = 0 to

ei 1
2 θ·σ ψ(0,−)(0) = e−iθ·Jψ(0,−)(0)eiθ·J. (47)

For a rotation about the z axis, this is more explicitly

(
eiθ/2 0

0 e−iθ/2

)⎡
⎢⎣
⎛
⎜⎝v1(0,

1
2

)

v2(0,
1
2

)

⎞
⎟⎠ a†

c(0,
1
2

) +

⎛
⎜⎝v1(0,−1

2
)

v2(0,−1
2

)

⎞
⎟⎠ a†

c(0,−1
2

)

⎤
⎥⎦

=

⎛
⎜⎝ eiθ/2 v1(0,

1
2

)

e−iθ/2 v2(0,
1
2

)

⎞
⎟⎠ a†

c(0,
1
2

) +

⎛
⎜⎝ eiθ/2 v1(0,−1

2
)

e−iθ/2 v2(0,−1
2

)

⎞
⎟⎠ a†

c(0,−1
2

)

=

⎛
⎜⎝v1(0,

1
2

)

v2(0,
1
2

)

⎞
⎟⎠ e−iθ/2 a†

c(0,
1
2

) +

⎛
⎜⎝v1(0,−1

2
)

v2(0,−1
2

)

⎞
⎟⎠ eiθ/2 a†

c(0,−1
2

). (48)

We see that the momentum-zero 2-spinors are

v(0,
1
2

) = d+

(
0
1

)
and v(0,−1

2
) = d−

(
1
0

)
(49)

10
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which may surprise us. These formulas are missed in three leading textbooks [1–3].
We use our knowledge (32) of how annihilation operators respond to a rotation (18) by angle

π about the y axis. We use the matrix (18) that represents a rotation by π about y axis

eiπσy/2 =

(
0 1
−1 0

)
, (50)

and our rule (57) for how the annihilator part of the momentum-zero field transforms

e−iπJy/2ψ(0,+)(0)eiπJy/2 = eiπσy/2 ψ(0,+)(0), (51)

which in more detail (32) is

e−iπJy

⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ eiπJy =

(
0 1
−1 0

)⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎝a(0,−1

2
)

−a(0,
1
2

)

⎞
⎟⎠ (52)

to infer that (
0 1
−1 0

)[
c+

(
1
0

)
a(0,

1
2

) + c−

(
0
1

)
a(0,−1

2
)

]

= c+

(
0
−1

)
a(0,

1
2

) + c−

(
1
0

)
a(0,−1

2
)

= e−iπJy

[
c+

(
1
0

)
a(0,

1
2

) + c−

(
0
1

)
a(0,−1

2
)

]
eiπJy

= c+

(
1
0

)
a(0,−1

2
) − c−

(
0
1

)
a(0,

1
2

). (53)

So now we know that c− = c+, as may have been anticipated.
Under the same y rotation by π, the creation operators transform as (33)

e−iπJy

⎛
⎜⎝ a†

c(0,
1
2

)

a†
c(0,−1

2
)

⎞
⎟⎠ eiπJy =

(
0 1
−1 0

)⎛
⎜⎝ a†

c(0,
1
2

)

a†
c(0,−1

2
)

⎞
⎟⎠ =

⎛
⎜⎝a†

c(0,−1
2

)

−a†
c(0,

1
2

)

⎞
⎟⎠ , (54)

and so the formula (47) for how the zero-momentum part of the creator field transforms under
rotations gives us(

0 1
−1 0

)[
d+

(
0
1

)
a†

c(0,
1
2

) + d−

(
1
0

)
a†

c(0,−1
2

)

]

= d+

(
1
0

)
a†

c(0,
1
2

) + d−

(
0
−1

)
a†

c(0,−1
2

)

= d+

(
0
1

)
a†

c(0,−1
2

) − d−

(
1
0

)
a†

c(0,
1
2

). (55)

So now we know that d+ = −d−.
Does the x rotation give the same answers? We use the equations

11
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eiπσx/2 =

(
0 i
i 0

)
, (56)

and

eiπσx/2 ψ(0,+)(0) = e−iπJx/2ψ(0,+)(0)eiπJx/2, (57)

and

e−iπJx

⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ eiπJx =

(
0 i
i 0

)⎛
⎜⎝ a(0,

1
2

)

a(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎝ia(0,−1

2
)

ia(0,
1
2

)

⎞
⎟⎠ (58)

to infer that (
0 i
i 0

)[
c+

(
0
1

)
a(0,

1
2

) + c−

(
1
0

)
a(0,−1

2
)

]

= c+

(
i
0

)
a(0,

1
2

) + c−

(
0
i

)
a(0,−1

2
)

= e−iπJx

[
c+

(
0
1

)
a(0,

1
2

) + c−

(
1
0

)
a(0,−1

2
)

]
eiπJx

= c+

(
0
i

)
a(0,−1

2
) + c−

(
i
0

)
a(0,

1
2

) (59)

which again tells us that c− = c+.
The creation versions of these equations are

e−iπJx

⎛
⎜⎝ a†

c(0,
1
2

)

a†
c(0,−1

2
)

⎞
⎟⎠ eiπJx =

(
0 −i
−i 0

)⎛
⎜⎝ a†

c(0,
1
2

)

a†
c(0,−1

2
)

⎞
⎟⎠ =

⎛
⎜⎝−ia†

c(0,−1
2

)

−ia†
c(0,

1
2

)

⎞
⎟⎠ .

(60)

and (
0 i
i 0

)[
d+

(
0
1

)
a†

c(0,
1
2

) + d−

(
1
0

)
a†

c(0,−1
2

)

]

= d+

(
i
0

)
a†

c(0,
1
2

) + d−

(
0
i

)
a†

c(0,−1
2

)

= d+

(
0
−i

)
a†

c(0,−1
2

) + d−

(
−i
0

)
a†

c(0,
1
2

) (61)

which again tell us that d+ = −d−.
So with c = c+ = c−, and d = d+ = −d−, our momentum-zero spinors are

u(0,
1
2

) = c

(
1
0

)
and u(0,−1

2
) = c

(
0
1

)

v(0,
1
2

) = d

(
0
1

)
and v(0,−1

2
) = d

(
−1
0

)
.

(62)

12
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We have derived these formulas for 2-component spinors from the Pauli matrices and the SU(2)
representation of rotations that they provide. These formulas therefore are independent of the
choice (7) and (66) of gamma matrices.

6. Four-component spinors at zero momentum

In this Section, we will use the 2-component spinors (62) and the Dirac equation in momentum
space at momentum zero to derive formulas for the 4-component spinors u(0, s) and v(0, s) at
momentum zero.

We make 4-component u spinors by putting two pairs of 2-component u spinors (62)
together

u(0,
1
2

) =

⎛
⎜⎝u�(0,

1
2

)

ur(0,
1
2

)

⎞
⎟⎠ =

⎛
⎜⎜⎝

c�
0
cr

0

⎞
⎟⎟⎠ and u(0,−1

2
) =

⎛
⎜⎝u�(0,−1

2
)

ur(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎜⎝

0
c�
0
cr

⎞
⎟⎟⎠

(63)

and by putting two pairs of 2-component v spinors (62) together

v(0,
1
2

) =

⎛
⎜⎝v�(0,

1
2

)

vr(0,
1
2

)

⎞
⎟⎠ =

⎛
⎜⎜⎝

0
d�

0
dr

⎞
⎟⎟⎠ and v(0,−1

2
) =

⎛
⎜⎝v�(0,−1

2
)

vr(0,−1
2

)

⎞
⎟⎠ =

⎛
⎜⎜⎝
−d�

0
−dr

0

⎞
⎟⎟⎠ .

(64)

in which c�, cr, d�, and dr are arbitrary constants. Dirac’s equation at momentum zero will tell
us that c� = cr and that v� = −vr.

The labels � and r refer to whether the spinors behave as left-handed or right-handed 2-
component spinors under Lorentz boosts. How a Dirac field is made out of a 2-component
left-handed field and a 2-component right-handed field is outlined in section 8 and described
more fully in references [12, 13].

To narrow down the range of the constants c�, cr, d�, and dr in the 4-component spinors (63)
and (64), we use Dirac’s equation

(γ · ∇ − γ0∂0 + m)ψ(x) = (γa∂a + m)ψ(x) = 0 (65)

and his gamma matrices (7)

γ0 = −i

(
0 1
1 0

)
and γ i = −i

(
0 σi

−σi 0

)
(66)

in which the σi’s are the Pauli matrices (9) and the extra factors of i ensure that the
anticommutator of two gamma matrices is {γa, γb} = 2ηab in which the diagonal of η is
(−1, 1, 1, 1).

When the derivative ∂a in the Dirac equation acts on u(p, s)eip·x , it becomes ipa;
when it acts on v(p, s)e−ip·x , becomes −ipa. This is the second reason why the spinors
u that multiply annihilation operators are different from those v that multiply creation
operators.

13
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The Dirac equation in momentum space therefore splits into one equation for u spinors and
another for v spinors

(ipaγ
a + m)u(p, s) = 0 and (−ipaγ

a + m)v(p, s) = 0. (67)

At pa = (−m, 0, 0, 0), these equations are (−iγ0 + 1)u(0, s) = 0 for s = ± 1
2

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c�
0
cr

0

⎞
⎟⎟⎠ = 0 and

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
c�
0
cr

⎞
⎟⎟⎠ = 0

(68)

and (iγ0 + 1)v(0, s) = 0 for s = ± 1
2⎛

⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
d�

0
dr

⎞
⎟⎟⎠ = 0 and

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−d�

0
−dr

0

⎞
⎟⎟⎠ = 0. (69)

They require that c� = cr and that d� = −dr. So with c� = cr = c and d� = −dr = d, our
spinors are

u(0,
1
2

) = c

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , u(0,−1

2
) = c

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ ,

v(0,
1
2

) = d

⎛
⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎠ , v(0,−1

2
) = d

⎛
⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎠ .

(70)

Choosing the arbitrary relative phases of creation and annihilation operators and the arbitrary
phase of the field and normalizing the spinors, we get the zero-momentum spinors derived by
Weinberg [8]

u

(
0,

1
2

)
=

1√
2

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , u

(
0,−1

2

)
=

1√
2

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠

v

(
0,

1
2

)
=

1√
2

⎛
⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎠ , v

(
0,−1

2

)
=

1√
2

⎛
⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎠ .

(71)

They obey the parity conditions

u(0, s) = iγ0u(0, s) and v(0, s) = −iγ0v(0, s), (72)

14
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the charge-conjugation conditions

u(0, s) = γ2v∗(0, s) and v(0, s) = γ2u∗(0, s), (73)

and the time-reversal conditions

u∗(0, s) = (−1)
1
2+sγ1γ3u(0,−s) and v∗(0, s) = (−1)

1
2+sγ1γ3v(0,−s).

(74)

The spinors (71) are derived in a book by Steven Weinberg [12] and in various arti-
cles [14, 15], and they are discussed by Peskin and Schroeder [5] and by Srednicki [4].
But for reasons of space, style, or emphasis, they are not stated explicitly in seven of the
leading textbooks on quantum field theory, and they are stated incorrectly in three of them
[1–3].

In those three books, it is assumed that spinors merely need to satisfy the Dirac
equation (65). But all that Dirac’s equation says about the spinors at zero momentum is that
the u spinors are eigenstates of γ0 with eigenvalue −i, and that the v spinors are eigenstates of
γ0 with eigenvalue i

γ0 u(0, s) = −i u(0, s) and γ0 v(0, s) = i v(0, s) (75)

which recapitulate (67)–(69). But the eigenvalues −i and i are degenerate; each has two
eigenvectors. The books [1–3] interchanged the two eigenvectors v(0, 1

2 ) and v(0,− 1
2 ).

Using the wrong spinors leads to Dirac fields that do not transform correctly under rotations,
Lorentz transformations, charge conjugation, or time reversal. Such fields can lead to physical
results that are incorrect. For instance, the naive spinors [3]

u↑ =
1√
2

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , u↓ =

1√
2

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ ,

v↑ =
1√
2

⎛
⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎠ , and v↓ =

1√
2

⎛
⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎠

(76)

do not obey the charge-conjugation conditions (73) and instead flip the spin

u↓ = γ2v∗↑ , u↑ = γ2v∗↓ , v↓ = γ2u∗
↑, and v↑ = γ2u∗

↓. (77)

Their use leads to the false conclusion that charge conjugation (A4) flips the spin [3]. The
naive v spinors (76) also do not obey the time-reversal conditions (74) and instead introduce
spurious signs: v↑ = γ1γ3v↓ and v↓ = −γ1γ3v↑. So Dirac and Majorana fields made with the
naive spinors (76) are mangled under rotations, Lorentz transformations, charge conjugation,
and time reversal.

7. Four-component spinors at finite momentum

In this Section, we will use the zero-momentum, 4-component spinors (71) and the Dirac
equation in momentum space to derive formulas for the 4-component spinors u(p, s) and v(p, s)
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at arbitrary momenta. We will find that the u and v spinors differ more at p �= 0 than at
p= 0.

The Dirac equation (65) tells us how Dirac fields depend upon the coordinate x = (x0, x)
and therefore how Dirac spinors depend upon the momentum p = (p0, p). In particular, the
combination

ψ(x) = (m − γa∂a) e±ip·xχ = (m ∓ iγa pa) e±ip·xχ (78)

for p2 = −m2 obeys the Dirac equation (65) for every constant four-component spinor
χ [16]

(γb∂b + m)ψ(x) = (±iγb pb + m)(m ∓ iγa pa) e±ip·xχ = (m2 + p2) e±ip·xχ = 0.

(79)

Since the u spinors in a Dirac field (91) occur with the phase eip·x , we set χ = u(0, s) and find
that

ψu,s(x) = (m − γa∂a) u(0, s) eip·x = (m − iγa pa) u(0, s) eip·x (80)

is a solution of the Dirac equation (γb∂b + m)ψu,s(x) = 0. So we set

u(p, s) =
m − iγa pa√
2p0(p0 + m)

u(0, s) (81)

in which the square root normalizes the spinor.
Similarly since the v spinors in a Dirac field (91) occur with the phase e−ip·x , we set χ =

v(0, s) and find that

ψv,s(x) = (m − γa∂a) v(0, s) e−ip·x (82)

is a solution of the Dirac equation (γb∂b + m)ψv,s(x) = 0. So we set

v(p, s) =
m + iγa pa√
2p0(p0 + m)

v(0, s). (83)

The vectors u(p, s) for s = ± 1
2 are two eigenvectors of −iγa pa with eigenvalue m, and the

vectors v(p, s) for s = ± 1
2 are two eigenvectors of −iγa pa with eigenvalue −m.

In more detail, the spinors are [15]

u(p,
1
2

) =
1

n(p0)

⎛
⎜⎜⎝

m + p0 − p3

−p1 − ip2

m + p0 + p3

p1 + ip2

⎞
⎟⎟⎠ , u(p,−1

2
) =

1
n(p0)

⎛
⎜⎜⎝

−p1 + ip2

m + p0 + p3

p1 − ip2

m + p0 − p3

⎞
⎟⎟⎠

v(p,
1
2

) =
1

n(p0)

⎛
⎜⎜⎝

−p1 + ip2

m + p0 + p3

−p1 + ip2

p3 − m − p0

⎞
⎟⎟⎠ , v(p,−1

2
) =

1
n(p0)

⎛
⎜⎜⎝

p3 − m − p0

p1 + ip2

m + p0 + p3

p1 + ip2

⎞
⎟⎟⎠
(84)
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in which the factor n(p0) = 2
√

p0(p0 + m) ensures their normalization

u†(p, s) u(p, s′) = δs,s′ , v†(p, s) v(p, s′) = δs,s′ . (85)

They obey the parity conditions (72)

u(p, s) = iγ0u(−p, s) and v(p, s) = −iγ0v(−p, s), (86)

the charge-conjugation conditions (73)

u(p, s) = γ2v∗(p, s) and v(p, s) = γ2u∗(p, s), (87)

and the time-reversal conditions (74)

u∗(p, s) = (−1)
1
2+sγ1γ3u(−p,−s) and v∗(p, s) = (−1)

1
2+sγ1γ3v(−p,−s).

(88)

If one switches to a different set of gamma matrices γ ′i = S γi S−1, then one must also
switch one’s spinors to u′(p, s) = S u(p, s) and v′(p, s) = Sv(p, s).

8. Left-handed and right-handed spin-one-half fields

This Section describes how the upper two components and the lower two components of a
Dirac field transform as left-handed and as right-handed fields under Lorentz transformations.

A 4-component Dirac field ψD(x), D=1,2,3,4,

ψD(x) =
∑

s=±1/2

∫
d3 p

(2π)3/2

[
uD(p, s) eip·x a(p, s) + vD(p, s) e−ip·x a†

c(p, s)
]

(89)

is made of a left-handed 2-component field ψ�(x) and a right-handed 2-component field
ψr(x)

ψ(x) =

(
ψ�(x)
ψr(x)

)
(90)

and so has the form(
ψ�(x)
ψr(x)

)
=

∑
s=±1/2

∫
d3 p

(2π)3/2

[(
u�(p, s)
ur(p, s)

)
eip·x a(p, s) +

(
v�(p, s)
vr(p, s)

)
e−ip·x a†

c(p, s)

]
.

(91)

We can get a better understanding of the left-handed and right-handed spinors and fields
by rewriting the spinor formulas (81) and (83). To do that, we recall that the zero-momentum
spinors (71) obey the parity conditions (72)

u(0, s) = iγ0u(0, s) and v(0, s) = −iγ0v(0, s). (92)

These conditions let us replace −iγa pau(0, s) by γaγ0 pau(0, s) and iγa pav(0, s) by
γaγ0 pav(0, s) without disturbing the definitions (81) and (83) of the 4-spinors u and v
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u(p, s) =
m + γaγ0 pa√
2p0(p0 + m)

u(0, s) and v(p, s) =
m + γaγ0 pa√
2p0(p0 + m)

v(0, s). (93)

We now see that the 4-spinors u(p, s) and v(p, s) are generated from the zero-momentum spinors
u(0, s) and v(0, s) by the same matrix m + γaγ0 pa

m + γaγ0 pa =

(
m + p0 − p · σ 0

0 m + p0 + p · σ

)
(94)

which is block diagonal.
The upper-left block m + p0 − p · σ is proportional to the left-handed 2 × 2 representation

D(1/2,0)(L(p)) of the Lorentz transformation L(p) that takes momentum (m, 0) to p = (p0, p) via
a boost in the p̂ direction [12, 15]. The matrix D(1/2,0)(L(p)) is

D(1/2,0)(L(p)) =
m + p0 − p · σ√

2m(p0 + m)
= exp

(
−α p̂ · σ

2

)
(95)

in which α = arctanh(|p|/p0) [13, 15].
The lower-right block m + p0 + p · σ is proportional to the right-handed 2 × 2 representa-

tion D(0,1/2)(L(p)) of the same Lorentz transformation L(p)

D(0,1/2)(L(p)) =
m + p0 + p · σ√

2m(p0 + m)
= exp

(
α p̂ · σ

2

)
. (96)

If we combine the left- and right-handed representations of L(p) into a single 4 × 4 matrix

D(1/2,0)⊕(0,1/2)(L(p)) =

(
D(1/2,0)(L(p)) 0

0 D(0,1/2)(L(p))

)
, (97)

then we can write the formulas (93) for the spinors as

u(p, s) =
√

m
p0

D(1/2,0)⊕(0,1/2)(L(p)) u(0, s)

v(p, s) =
√

m
p0

D(1/2,0)⊕(0,1/2)(L(p)) v(0, s)

(98)

or equivalently as

u(p, s) =

(
u�(p, s)
ur(p, s)

)
=

√
m
p0

(
D(1/2,0)(L(p)) u�(0, s)
D(0,1/2)(L(p)) ur(0, s)

)

v(p, s) =

(
v�(p, s)
vr(p, s)

)
=

√
m
p0

(
D(1/2,0)(L(p)) v�(0, s)
D(0,1/2)(L(p)) vr(0, s)

)
.

(99)

Weinberg [17] has shown that a Dirac field (91) transforms under a Lorentz transformation
Λ as

U(Λ)ψD(x) U−1(Λ) = D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1)

4∑
D′=1

ψD′(Λx) (100)

if and only if the spinors are defined by equations (71) and (98). A derivation of this result is
sketched in appendix B.
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Since the 4 × 4 matrix D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1) is block diagonal, we can separate

equation (100), that says how a Dirac field transforms under a Lorentz transformation Λ, into
one equation for the left-handed field ψ� and another for the right-handed field ψr

U(Λ)ψ�(x)U−1(Λ) = D(1/2,0)(Λ−1)ψ�(Λx)

U(Λ)ψr(x)U−1(Λ) = D(0,1/2)(Λ−1)ψr(Λx).
(101)

To see why u� and v� are called left handed and why ur and vr are called right
handed, we look at the terms u�(p, s)eip·xa(p, s), v�(p, s) e−ip·x a†

c(p, s), ur(p, s)eip·xa(p, s), and
vr(p, s) e−ip·x a†

c(p, s) in the Dirac field (91) for particles with momentum in the z direction
p= p̂z in the limit m/p0 → 0, a limit reached by neutrinos with p0�1 keV. In the m/p0 → 0
limit, the spinors (84) for p= p̂z are

(
u�( p̂z, 1

2 )

ur( p̂z, 1
2 )

)
→

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ,

(
u�( p̂z,− 1

2 )

ur( p̂z,− 1
2 )

)
→

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ,

(
v�( p̂z, 1

2 )

vr( p̂z, 1
2 )

)
→

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , and

(
v�( p̂z,− 1

2 )

vr( p̂z,− 1
2 )

)
→

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

(102)

and so the nonzero terms uD(p, s)eip·xa(p, s) and vD(p, s) e−ip·x a†
c(p, s) are

ur( p̂z, 1
2 ) eip(x) a( p̂z, 1

2 ), u�( p̂z,− 1
2 ) eip(z−t) a( p̂z,− 1

2 ),

v�( p̂z, 1
2 ) e−ip·x a†

c( p̂z, 1
2 ), and vr( p̂z,− 1

2 ) e−ip·x a†
c( p̂z,− 1

2 ).
(103)

The field �(x) is said to be left handed because it contains u�( p̂z,− 1
2 ) a( p̂z,− 1

2 ) which destroys

particles with momentum antiparallel to the spin and v�( p̂z, 1
2 ) a†

c( p̂z, 1
2 ) which creates antipar-

ticles with momentum parallel to the spin. The field r(x) is said to be right handed because
it contains ur( p̂z, 1

2 ) a( p̂z, 1
2 ) which destroys particles with momentum parallel to the spin and

vr( p̂z,− 1
2 ) a†

c( p̂z,− 1
2 ) which creates antiparticles with momentum antiparallel to the spin. The

weak gauge group SU(2)� acts on left-handed fields.
The simplest spin-one-half fields are the 2-component Majorana fields that are linear combi-

nations of the annihilation operators a(p, s) and their adjoints a†(p, s) multiplied by left-handed
and right-handed 2-component spinors (99)

ψ�M(x) =
∑

s=±1/2

∫
d3 p

(2π)3/2
u�(p, s) eip·x a(p, s) + v�(p, s) e−ip·x a†(p, s)

ψrM(x) =
∑

s=±1/2

∫
d3 p

(2π)3/2
ur(p, s) eip·x a(p, s) + vr(p, s) e−ip·x a†(p, s).

(104)
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Together they make a 4-component Majorana field

ψM(x) =

(
ψ�M(x)
ψrM(x)

)
. (105)

If one has two annihilation operators a1(p, s) and a2(p, s) and their adjoints a†
1(p, s) and

a†
2(p, s), all referring to particles of the same mass, then one may make operators that

annihilation and create particles and their antiparticles

a(p, s) =
1√
2

[a1(p, s) + ia2(p, s)] , ac(p, s) =
1√
2

[a1(p, s) − ia2(p, s)]

a†(p, s) =
1√
2

[
a†

1 p, s) − ia†
2(p, s)

]
, a†

c(p, s) =
1√
2

[
a†

1(p, s) + ia†
2(p, s)

]
(106)

and define a Dirac field as

ψ(x) =
1√
2

[ψM1(x) + iψM1(x)] =

(
ψ�(x)
ψr(x)

)
=

1√
2

(
ψ�M1(x) + iψ�M2(x)
ψrM1(x) + iψrM1(x)

)
.

(107)

9. Conclusions

The Dirac spinors at momentum zero u(0, s) and v(0, s) cannot be chosen arbitrarily as four
orthonormal 4-component vectors. They are instead determined (71) by the requirement that
the Dirac field transform correctly under rotations and obey the Dirac equation as explained in
sections 3–6.

Once one has the zero-momentum spinors, the Dirac equation yields the finite-momentum
spinors (81) and (83) as explained in section 7.

A 4-component Dirac field ψ is composed of a 2-component left-handed field ψ� and a
2-component right-handed field ψr as described in section 8.

Appendix A shows that when spinors are defined correctly (71), (81), and (83), a Dirac
field transforms appropriately under charge conjugation, parity, and time reversal. Appendix B
explains how particles and fields transform under Lorentz transformations and shows that
the spinors of a Dirac field that transforms correctly under Lorentz transformations has
spinors that are related to its zero-momentum spinors by equations (81) and (83). Appendix C
explains that a Dirac field is a complex linear combination of two Majorana fields of the same
mass.
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Appendix A. Charge conjugation, parity, and time reversal

Because spinors obey the parity, charge-conjugation, and time-reversal conditions (86)–(88),
Dirac fields transform simply under parity, charge conjugation, and time reversal.
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Parity reverses space and momentum, so the annihilation and creation operators obey the
rules [18]

P a†
c(p, s) P−1 = ηc a†

c(−p, s) = −η∗ a†
c(−p, s) and P a(p, s) P−1 = η∗ a(−p, s).

(A1)

They and the parity conditions (86) imply that a Dirac field transforms simply under parity

Pψ(t, x) P−1 =
∑

s

∫
d3 p

(2π)3/2
u(p, s) eip·x Pa(p, s)P−1 + v(p, s) e−ip·x Pa†

c(p, s)P−1

=
∑

s

∫
d3 p

(2π)3/2
u(p, s) eip·x η∗a(−p, s) + v(p, s) e−ip·x ηc a†

c(−p, s)

=
∑

s

∫
d3 p

(2π)3/2
u(−p, s) eip·Px η∗a(p, s) + v(−p, s) e−ip·Px ηc a†

c(p, s)

=
∑

s

∫
d3 p

(2π)3/2
iγ0u(p, s) eip·Px η∗a(p, s) − iγ0v(p, s) e−ip·Px ηc a†

c(p, s)

= η∗iγ0
∑

s

∫
d3 p

(2π)3/2
u(p, s) eip·Px a(p, s) + v(p, s) e−ip·Px a†

c(p, s)

= η∗iγ0 ψ(t,−x). (A2)

A Majorana field (105) creates and destroys the same kind of particle. Its Fourier expansion
is that of a Dirac field but with a†

c = a†

ψM(x) =
∑

s=±1/2

∫
d3 p

(2π)3/2
u(p, s) eip·x a(p, s) + v(p, s) e−ip·x a†(p, s). (A3)

For a Majorana particle, a†
c(p, s) = a†(p, s), so ηc = η. But the parity rules (A1) also require

that ηc = −η∗, so η must be imaginary, η = −η∗.
In general, charge conjugation maps particles into their antiparticles [19]

C a†
c(p, s) C−1 = ξca†(p, s) = ξ∗a†(p, s) and C a(p, s) C−1 = ξ∗ac(p, s).

(A4)

The charge-conjugation conditions (87) and the definition (A4) of charge conjugation imply
that a Dirac field (89) transforms simply under charge conjugation

Cψ(x) C−1 =
∑

s

∫
d3 p

(2π)3/2
u(p, s) eip·x Ca(p, s)C−1 + v(p, s)e−ip·x Ca†

c(p, s)C−1

=
∑

s

∫
d3 p

(2π)3/2
u(p, s) eip·x ξ∗ac(p, s) + v(p, s) e−ip·x ξca†(p, s)

= ξ∗
∑

s

∫
d3 p

(2π)3/2
γ2v∗(p, s) eip·x ac(p, s) + γ2u∗(p, s) e−ip·x a†(p, s)
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= ξ∗γ2
∑

s

∫
d3 p

(2π)3/2
u∗(p, s) e−ip·x a†(p) + v∗(p, s) eip·x ac(p, s)

= ξ∗γ2 ψ∗(x) (A5)

in which the asterisk denotes complex and Hermitian conjugation but not the conversion of
column vectors into row vectors.

For Majorana particles, the charge-conjugation conditions (87) imply that ξca†(p, s) =
C a†

c(p, s) C−1 = Ca†(p, s)C−1 = ξa†(p, s), so the phase ξc = ξ∗ = ξ is real for Majorana par-
ticles. The charge-conjugation conditions (87) also imply that Hermitian conjugation changes
a Majorana field (A3) to

ψ∗
M =

∑
s=±1/2

∫
d3 p

(2π)3/2
u∗(p, s) e−ip·x a†(p, s) + v∗(p, s) eip·x a(p, s)

=
∑

s=±1/2

∫
d3 p

(2π)3/2
γ2u(p, s) eip·x a(p, s) + γ2v(p, s) e−ip·x a†(p, s)

(A6)

so that a Majorana field obeys the Majorana condition

ψ∗
M(x) = γ2 ψM(x). (A7)

Time reversal reverses momentum and spin, adds a phase, and complex conjugates complex
numbers [20]

T z a(p, s) T−1 = z∗ (−1)
1
2−s ζ∗ a(−p,−s)

Tw a†
c(p, s) T−1 = w∗ (−1)

1
2−s ζc a†

c(−p,−s)
(A8)

in which z andw are arbitrary complex numbers, and ζc = ζ∗. This definition (A8) and the time-
reversal conditions (88) imply that a Dirac field (89) transforms simply under time reversal

Tψ(t, x) T−1 =
∑

s

∫
d3 p

(2π)3/2
u∗(p, s) e−ip·x Ta(p, s)T−1 + v∗(p, s) eip·x Ta†

c(p, s)T−1

=
∑

s

(−1)
1
2−s

∫
d3 p

(2π)3/2
u∗(p, s) e−ip·xζ∗ a(−p,−s) + v∗(p, s) eip·xζc a†

c(−p,−s)

=
∑

s

(−1)
1
2−s

∫
d3 p

(2π)3/2
u∗(p, s) e−ip·xζ∗ a(−p,−s) + v∗(p, s) eip·xζ∗ a†

c(−p,−s)

= ζ∗
∑

s

(−1)
1
2−s

∫
d3 p

(2π)3/2
u∗(p, s) e−ip·xa(−p,−s) + v∗(p, s) eip·xa†

c(−p,−s)

= ζ∗γ1γ3
∑

s

∫
d3 p

(2π)3/2
u(−p,−s) e−ip·xa(−p,−s) + v(−p,−s) eip·xa†

c(−p,−s)

= ζ∗γ1γ3 ψ(−t, x). (A9)
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Appendix B. Wigner rotations

Steven Weinberg has shown that the Lorentz-transformation properties of a quantum field of
any spin determine the spinors of that field [21]. This appendix repeats that derivation for fields
of spin one-half and inserts some extra steps that may help students.

In section 3 we considered how rotations change states |0, s〉 without saying how Lorentz
boosts change them to states of finite momentum. Because we will be talking about Lorentz
transformations, it will be convenient to write states as |(p0, p), s〉 ≡ |p, s〉. The state |p, s〉 is
the image of the state of a particle at rest |0, s〉 under the unitary transformation U(L(p)) that
implements the standard Lorentz boost L(p) in the direction p

|p, s〉 =
√

m
p0

U(L(p)) |0, s〉 (B1)

normalized so that 〈p, s|p′, s′〉 = δss′δ(p− p′). A Lorentz transformation Λ changes the state
|p, s〉 to a linear combination of states with momentum Λp but with different spins in the z
direction

U(Λ)|p, s〉 =

√
(Λp)0

p0

∑
s′=±1/2

Ds′s(RW(Λ, p)) |Λp, s′〉. (B2)

The 2 × 2 matrix D(RW(Λ, p)) as in equation (15) represents the Wigner rotation [22, 23]

RW(Λ, p) = L−1(Λp)Λ L(p) (B3)

that boosts a particle at rest to momentum p, and then to Λp, and then back to rest. The Wigner
rotation arises because

U(Λ)|p, s〉 = N(p) U(Λp) U(L−1(Λp)) U(Λ) U(L(p)) |0, s〉

= N(p) U(Λp) U(RW(Λ, p)) |0, s〉

= N(p) U(Λp)
1/2∑

s′=−1/2

Ds′s(RW(Λ, p)) |0, s′〉

=

√
(Λp)0

p0

1/2∑
s′=−1/2

Ds′s(RW(Λ, p)) |Λp, s′〉. (B4)

So the generalizations to Lorentz transformations of states of finite momentum of the formulas
(30) for how zero-momentum creation and annihilation operators transform under rotations
are

U(Λ) a†(p, s) U−1(Λ) =

√
(Λp)0

p0

1/2∑
s′=−1/2

D∗
ss′ (R

−1
W (Λ, p)) a†(Λp, s)

U(Λ) a(p, s) U−1(Λ) =

√
(Λp)0

p0

1/2∑
s′=−1/2

Dss′ (R
−1
W (Λ, p)) a(Λp, s′).

(B5)
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Thus a Dirac field (89) will transform correctly under a Lorentz transformation Λ (100)

U(Λ)ψD(x) U−1(Λ) =
∑

s=±1/2

∫
d3 p

(2π)3/2

[
uD(p, s) eip·x U(Λ)a(p, s)U−1(Λ)

+ vD(p, s) e−ip·x U(Λ)a†
c(p, s)U−1(Λ)

]
=

4∑
D′=1

D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1)ψD′(Λx)

=
4∑

D′=1

∑
s=±1/2

D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1)

×
∫

d3 p
(2π)3/2

[
uD′ (p, s) eip·Λx a(p, s)

+ vD′(p, s) e−ip·Λx a†
c(p, s)

]
(B6)

if

∑
s,s′=±1/2

∫
d3 p

(2π)3/2

√
(Λp)0

p0
uD(p, s) eip·xDss′ (R

−1
W (Λ, p)) a(Λp, s′)

=

4∑
D′=1

∑
s=±1/2

D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1)

∫
d3 p

(2π)3/2
uD′(p, s) eip·Λx a(p, s) (B7)

and

∑
s,s′=±1/2

∫
d3 p

(2π)3/2

√
(Λp)0

p0
vD(p, s) e−ip·xD∗

ss′ (R
−1
W (Λ, p)) a†

c(Λp, s′)

=

4∑
D′=1

∑
s=±1/2

D(1/2,0)⊕(0,1/2)
D,D′

(
Λ−1

) ∫ d3 p
(2π)3/2

vD′(p, s)e−ip·Λx a†
c(p, s).

(B8)

Setting d3 p = p0d3Λp/(Λp)0) in the left-hand sides of these equations (B7) and (B8),
and then on their right-hand sides changing variables p→ Λp and using Λp · Λx = p · x,
we get

∑
s,s′=±1/2

∫
d3Λp

(2π)3/2

√
p0

(Λp)0
uD(p, s) eip·xDss′ (R

−1
W (Λ, p)) a(Λp, s′)

=

4∑
D′=1

∑
s=±1/2

D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1)

∫
d3Λp

(2π)3/2
uD′(Λp, s)eip·x a(Λp, s) (B9)

and
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∑
s,s′=±1/2

∫
d3Λp

(2π)3/2

√
p0

(Λp)0
vD(p, s) e−ip·xD∗

ss′ (R
−1
W (Λ, p)) a†

c(Λp, s′)

=
4∑

D′=1

∑
s=±1/2

D(1/2,0)⊕(0,1/2)
D,D′ (Λ−1)

∫
d3Λp

(2π)3/2
vD′ (Λp, s)e−ip·x a†

c(Λp, s).

(B10)

By equating the coefficients of eip·xa(Λp, s) in (B9) and of e−ip·xa†
c(Λp, s) in (B10), we find

∑
s′

√
p0

(Λp)0
uD(p, s′) D−1

s′s (RW(Λ, p)) =
∑

D′
D(1/2,0)⊕(0,1/2)−1

D,D′ (Λ) uD′(Λp, s)

∑
s′

√
p0

(Λp)0
vD(p, s′) D−1∗

s′s (RW(Λ, p)) =
4∑

D′=1

D(1/2,0)⊕(0,1/2)−1
D,D′ (Λ) vD′(Λp, s).

(B11)

We now multiply these equations by the matrices Dss′′ (RW(Λ, p)) and D∗
ss′′ (RW(Λ, p)) and sum

over s

∑
s,s′

√
p0

(Λp)0
uD(p, s′) D−1

s′s (RW(Λ, p))Dss′′(RW(Λ, p))

=
∑
s,D′

D(1/2,0)⊕(0,1/2)−1
D,D′ (Λ) uD′(Λp, s)Dss′′ (RW(Λ, p))

∑
s,s′

√
p0

(Λp)0
vD(p, s′) D−1∗

s′s (RW(Λ, p))D∗
ss′′(RW(Λ, p))

=
∑
s,D′

D(1/2,0)⊕(0,1/2)−1
D,D′ (Λ) vD′ (Λp, s)D∗

ss′′ (RW(Λ, p)).

(B12)

We then get √
p0

(Λp)0
uD(p, s′′) =

∑
s,D′

D(1/2,0)⊕(0,1/2)−1
D,D′ (Λ) uD′ (Λp, s)Dss′′ (RW(Λ, p))

√
p0

(Λp)0
vD(p, s′′) =

∑
s,D′

D(1/2,0)⊕(0,1/2)−1
D,D′ (Λ) vD′(Λp, s)D∗

ss′′ (RW(Λ, p)).

(B13)

We now multiply equations (B13) by the matrix D(1/2,0)⊕(0,1/2)
D′′ ,D (Λ) and sum over D and D′

∑
D

√
p0

(Λp)0
D(1/2,0)⊕(0,1/2)

D′′ ,D (Λ) uD(p, s′′)

=
∑
s,D,D′

D(1/2,0)⊕(0,1/2)
D′′,D (Λ)D(1/2,0)⊕(0,1/2)−1

D,D′ (Λ) uD′ (Λp, s)Dss′′ (RW(Λ, p))
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∑
D

√
p0

(Λp)0
D(1/2,0)⊕(0,1/2)

D′′ ,D (Λ) vD(p, s′′),

=
∑
s,D,D′

D(1/2,0)⊕(0,1/2)
D′′,D (Λ)D(1/2,0)⊕(0,1/2)−1

D,D′ (Λ) vD′(Λp, s)D∗
ss′′(RW(Λ, p)).

(B14)

These equations are more simply

∑
D

√
p0

(Λp)0
D(1/2,0)⊕(0,1/2)

D′′,D (Λ) uD(p, s′′) =
∑

s

uD′′ (Λp, s)Dss′′ (RW(Λ, p))

∑
D

√
p0

(Λp)0
D(1/2,0)⊕(0,1/2)

D′′,D (Λ) vD(p, s′′) =
∑

s

vD′′(Λp, s)D∗
ss′′(RW(Λ, p)).

(B15)

We set p= 0 and p(0) = (m, 0), drop some primes, and interchange the right- and left-hand
sides of these equations

uD(Λp(0), s) =
∑

D′

√
m

(Λp0)0
D(1/2,0)⊕(0,1/2)

D,D′ (Λ) uD′(p(0), s)

vD(Λp(0), s) =
∑

D′

√
m

(Λp)0
D(1/2,0)⊕(0,1/2)

D,D′ (Λ) vD′(p(0), s).

(B16)

Setting Λ = L(p), the standard boost that takes p(0) to p,

uD(p, s) =
∑

D′

√
m

(Λp0)0
D(1/2,0)⊕(0,1/2)

D,D′ (Λ) uD′ (p(0), s)

vD(p, s) =
∑

D′

√
m

(Λp)0
D(1/2,0)⊕(0,1/2)

D,D′ (Λ) vD′ (p(0), s)

(B17)

and switching back to using 3-momenta to label spinors, we find

uD(p, s) =
∑

D′

√
m
p0

D(1/2,0)⊕(0,1/2)
D,D′ (Λ) uD′(0, s)

vD(p, s) =
∑

D′

√
m
p0

D(1/2,0)⊕(0,1/2)
D,D′ (Λ) vD′(0, s)

(B18)

which are the desired formulas (98) that express the spinors at finite momentum in terms of
the spinors at zero momentum.
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Appendix C. Majorana and Dirac fields

We have seen (104)–(107) that a Dirac field (89) is a complex linear combination of two
Majorana fields (A3) of the same mass

ψ(x) =
1√
2

[ψM1(x) + iψM2(x)]

=
∑

s

∫
d3 p

(2π)3/2

{
u(p, s)eip·x [a1(p, s) + ia2(p, s)] + v(p, s)

× e−ip·x
[
a†

1(p, s) + ia†
2(p, s)

]}

=
∑

s

∫
d3 p

(2π)3/2

[
uD(p, s) eip·x a(p, s) + vD(p, s) e−ip·x a†

c(p, s)
]

(C1)

and that the annihilation and creation operators of the Dirac field are complex lin-
ear combinations of the annihilation and creation operators of two Majorana fields ψM1

and ψM2

a(p, s) =
1√
2

[a1(p, s) + ia2(p, s)] , ac(p, s) =
1√
2

[a1(p, s) − ia2(p, s)]

a†(p, s) =
1√
2

[
a†

1 p, s) − ia†
2(p, s)

]
, a†

c(p, s) =
1√
2

[
a†

1(p, s) + ia†
2(p, s)

]
.

(C2)

The action of a Dirac field is the sum of the actions of its Majorana fields

−ψ(γa∂a + m)ψ = −1
2
ψM1(γ

a∂a + m)ψM1 −
1
2
ψM2(γ

a∂a + m)ψM2 (C3)

in which ψ = iψ†γ0 = ψ†β and a = 0, 1, 2, 3. The cross-terms

−i
1
2
ψM1(γa∂a + m)ψM2 + i

1
2
ψM2(γa∂a + m)ψM1 (C4)

vanish if we integrate by parts and drop surface terms because the fields anticommute

{ψ†
M1(x),ψM2(y)} = 0 and {ψ†

M2(x),ψM1(y)} = 0, (C5)

because they obey the Majorana condition (A7), and because the matrix γ2γ0 is antisymmetric,
while the matrices γ2γ0γa for a = 0, 1, 2, 3 are symmetric

(γ2γ0)αβ = −(γ2γ0)βα and (γ2γ0γa)αβ = (γ2γ0γa)βα. (C6)

By using the formulas (7) for the gamma matrices, we may write the action for a single
Majorana field as

−1
2
ψM(γa∂a + m)ψM =− 1

2
iψ†

Mγ
0(γa∂a + m)ψM

=− 1
2

iψ†
M(−∂0 + γ0γ · ∇+ mγ0)ψM.

(C7)
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Like a Dirac field, a 4-component Majorana field is composed of two 2-component
fields [14]

ψM =

(
�
r

)
, (C8)

in which � is left handed and r is right handed. In terms of � and r, the action (C7) of the
Majorana field may be written as [13, 14]

−1
2
ψM(γa∂a + m)ψM =

1
2

i
(
�† r†

)(∂0 − σ · ∇ im
im ∂0 + σ · ∇

)(
�
r

)

=
1
2

i�†(∂0 − σ · ∇)�+
1
2

ir†(∂0 + σ · ∇)r

− 1
2

m(�†r + r†�). (C9)

In this notation, the Majorana condition (A7)(
�∗

r∗

)
= −i

(
0 σ2

−σ2 0

)(
�
r

)
=

(
−iσ2r
iσ2�

)
(C10)

tells us that � = −iσ2r∗ and r = iσ2�∗, or more simply that �1 = −r∗2 and �2 = r∗1. So one can
write the action (C9) of a Majorana field entirely in terms of �

−1
2
ψM(γa∂a + m)ψM =

1
2

i�†(∂0 − σ · ∇)�+
1
2

i�T(∂0 − σ∗ · ∇)�∗

− 1
2

im(�†σ2�∗ − �Tσ2�) (C11)

or entirely in terms of r

−1
2
ψM(γa∂a + m)ψM =

1
2

irT(∂0 + σ∗ · ∇)r∗ +
1
2

ir†(∂0 + σ · ∇)r

− 1
2

im(rTσ2r − r†σ2r∗). (C12)

The action (C9) takes simpler forms when we integrate by parts, anticommute the fields, and
drop both the surface terms and an infinite constant

−1
2
ψM(γa∂a + m)ψM = i�†(∂0 − σ · ∇)�− 1

2
im(�†σ2�∗ − �Tσ2�)

= ir†(∂0 + σ · ∇)r − 1
2

im(rTσ2r − r†σ2r∗). (C13)

Under a Lorentz transformation L, the fields �(x) and r(x) transform as

U(L) �(x) U−1(L) = D(1/2,0)(L−1) �(Lx)

U(L) r(x) U−1(L) = D(0,1/2)(L−1) r(Lx)
(C14)

in which the unitary operator U(L) ≡ U(L(θ,λ)) and the complex, unimodular 2 × 2 matrices
of unit determinant

D(1/2,0)(L(θ,λ)) = e−(λ+iθ)·σ/2 and D(0,1/2)(L(θ,λ)) = e(λ−iθ)·σ/2 (C15)
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both represent the Lorentz transformation

L(θ,λ) = eθ·R+λ·B (C16)

where

R1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ R2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ R3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠

(C17)

and

B1 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ B2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ B3 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ .

(C18)

For small θ and λ, the Lorentz transformation L(θ,λ) changes t, x to

t′ � t + λ · x

x′ � x+ tλ + θ ∧ x
(C19)

in which ∧ ≡ × means cross-product.
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