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Once the system is thermalized, one can start measuring properties of the
system. One computes a physical quantity every hundred or every thousand
sweeps and takes the average of these measurements. That average is the
mean value of the physical quantity at temperature T .
Why does this work? Consider two configurations x and x0 which re-

spectively have energies E = E(x) and E0 = E(x0) and are occupied with
probabilities Pt(x) and Pt(x0) as the system is thermalizing. If E0 > E,
then the rate R(x0 ! x) of going from x0 to x is the rate v of choosing to
test x when one is at x0 times the probability Pt(x0) of being at x0, that is,
R(x0 ! x) = v Pt(x0). The reverse rate is R(x ! x0) = v Pt(x) e�(E0�E)/kT

with the same v since the random walk is symmetric. The net rate from
x0 ! x then is

R(x0 ! x)�R(x ! x0) = v
⇣
Pt(x

0)� Pt(x) e
�(E0�E)/kT

⌘
. (14.8)

This net flow of probability from x0 ! x is positive if and only if

Pt(x
0)/Pt(x) > e�(E0�E)/kT . (14.9)

The probability distribution Pt(x) therefore flows with each sweep toward
the Boltzmann distribution exp(�E(x)/kT ). The flow slows and stops
when the two rates are equal R(x0 ! x) = R(x ! x0) a condition called
detailed balance. At this equilibrium, the distribution Pt(x) satisfies
Pt(x) = Pt(x0) e�(E�E0)/kT in which Pt(x0) eE

0/kT is independent of x. So the
thermalizing distribution Pt(x) approaches the distribution P (x) = c e�E/kT

in which c is independent of x. Since the sum of these probabilities must be
unity, we have X

x

P (x) = c
X
x

e�E/kT = 1 (14.10)

which means that the constant c is the inverse of the partition function

Z(T ) =
X
x

e�E(x)/kT . (14.11)

The thermalizing distribution approaches Boltzmann’s distribution (1.345)

Pt(x) ! PB(x) = e�E(x)/kT /Z(T ). (14.12)

Example 14.2 (Z2 Lattice Gauge Theory) First, one replaces space-time
with a lattice of points in d dimensions. Two nearest neighbor points are
separated by the lattice spacing a and joined by a link. Next, one puts an
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element U of the gauge group on each link. For the Z2 gauge group (exam-
ple 10.4), one assigns an action S2 to each elementary square or plaquette
of the lattice with vertices 1, 2, 3, and 4

S2 = 1� U1,2U2,3U3,4U4,1. (14.13)

Then, one replaces E(x)/kT with �S in which the action S is a sum of
all the plaquette actions Sp. More details are available at Michael Creutz’s
website (latticeguy.net/lattice.html).

Although the generation of configurations distributed according to the
Boltzmann probability distribution (1.345) is one of its most useful appli-
cations, the Monte Carlo method is much more general. It can generate
configurations x distributed according to any probability distribution P (x).

To generate configurations distributed according to P (x), we accept any
new configuration x0 if P (x0) � P (x) and also accept x0 with probability

P (x ! x0) = P (x0)/P (x) (14.14)

if P (x) > P (x0).
This works for the same reason that the Boltzmann version works. Con-

sider two configurations x and x0. If the system is thermalized, then the
probabilities Pt(x) and Pt(x0) have reached equilibrium, and so the rate
R(x ! x0) from x ! x0 must equal that R(x0 ! x) from x0 ! x. If
P (x0)<P (x), then R(x0 ! x) is

R(x0 ! x) = v Pt(x
0) (14.15)

in which v is the rate of choosing �x = x0 � x, while the rate R(x ! x0) is

R(x ! x0) = v Pt(x)P (x0)/P (x) (14.16)

with the same v since the random walk is symmetric. Equating the two
rates

R(x0 ! x) = R(x ! x0) (14.17)

we find that the flow of probability stops when

Pt(x) = P (x)Pt(x
0)/P (x0) = c P (x) (14.18)

where c is independent of x0. Thus Pt(x) ! P (x).
So far we have assumed that the rate of choosing x ! x0 is the same as

the rate of choosing x0 ! x. In Smart Monte Carlo schemes, physicists
arrange the rates vx!x0 and vx0!x so as to steer the flow and speed-up
thermalization. To compensate for this asymmetry, they change the second
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part of the Metropolis step from x ! x0 when E0 = E(x0) > E = E(x) to
accept conditionally with probability

P (x ! x0) = P (x0) vx0!x/ [P (x) vx!x0 ] . (14.19)

Now if P (x0)<P (x), then R(x0 ! x) is

R(x0 ! x) = vx0!x Pt(x
0) (14.20)

while the rate R(x ! x0) is

R(x ! x0) = vx!x0 Pt(x)P (x0) vx0!x/ [P (x) vx!x0 ] . (14.21)

Equating the two rates R(x0 ! x) = R(x ! x0), we find

Pt(x
0) = Pt(x)P (x0)/P (x). (14.22)

That is Pt(x) = P (x)Pt(x0)/P (x0) which gives

Pt(x) = N P (x) (14.23)

where N is a constant of normalization.

14.5 Solving Arbitrary Problems

If you know how to generate a suitably large space of trial solutions to a
problem, and you also know how to compare the quality of any two of your
solutions, then you can use a Monte Carlo method to solve it. The hard
parts of this seemingly magical method are characterizing a big enough space
of solutions s and constructing a quality function or functional that assigns
a number Q(s) to every solution in such a way that if s is a better solution
than s0, then

Q(s) > Q(s0). (14.24)

But once one has characterized the space of possible solutions s and has
constructed the quality function Q(s), then one simply generates zillions of
random solutions and selects the one that maximizes the function Q(s) over
the space of all solutions.
If one can characterize the solutions as vectors of a certain dimension,

s = (x1, . . . , xn), then one may use the Monte Carlo method of the previous
section (14.4) by replacing �E(s) with Q(s) and kT with a parameter of
the same dimension as Q(s), nominally dimensionless.


