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dp, d¢, and dz, and so derive the expressions (11.169) for the orthonor-
mal basis vectors p, (,‘Z), and 2.

11.14 Similarly, derive (11.175) from (11.174).

11.15 Use the definition (11.191) to show that in flat 3-space, the dual of the
Hodge dual is the identity: **dz’ = dz’ and ** (dz’ Adz*) = da? Ada®.

11.16 Use the definition of the Hodge star (11.202) to derive (a) two of the
four identities (11.203) and (b) the other two.

11.17 Show that Levi-Civita’s 4-symbol obeys the identity (11.207).

11.18 Show that €gm,, ™" = 247.

11.19 Show that €xgny, ™™ = 31 6}.

11.20 Using the formulas (11.175) for the basis vectors of spherical coordi-
nates in terms of those of rectangular coordinates, compute the deriva-
tives of the unit vectors 7, é, and dA) with respect to the variables r,
0, and ¢. Your formulas should express these derivatives in terms of
the basis vectors 7, 8, and ¢. (b) Using the formulas of (a) and our
expression (6.28) for the gradient in spherical coordinates, derive the
formula (11.297) for the laplacian V - V.

11.21 Consider the torus with coordinates 6, ¢ labeling the arbitrary point

p = (cos (R + rsinf),sin (R + rsinh), r cos ) (11.505)

in which R > r. Both 6 and ¢ run from 0 to 27. (a) Find the basis
vectors ey and ey. (b) Find the metric tensor and its inverse.

11.22 For the same torus, (a) find the dual vectors e’ and e? and (b) find
the nonzero connections Fék where i, j, & k take the values 6 & ¢.
11.23 For the same torus, (a) find the two Christoffel matrices I'y and Ty,

(b) find their commutator [I'g, I'¢], and (c) find the elements Rg%, R3¢97

R?ﬁe & and Ri " of the curvature tensor.

11.24 Find the curvature scalar R of the torus with points (11.505). Hint:
In these four problems, you may imitate the corresponding calculation
for the sphere in Sec. 11.42.

11.25 By differentiating the identity ¢%* gy = 6%, show that d¢g* =
G g*8gs or equivalently that dg’* = — ¢*¢"dgs.

11.26 Just to get an idea of the sizes involved in black holes, imagine an
isolated sphere of matter of uniform density p that as an initial con-
dition is all at rest within a radius r,. Its radius will be less than its
Schwarzschild radius if

2MG 4 G
A 2 <37rrg’p> Ex (11.506)

If the density p is that of water under standard conditions (1 gram per
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cc), for what range of radii 7, might the sphere be or become a black
hole? Same question if p is the density of dark energy.

11.27 For the points (11.392), derive the metric (11.395) with £ = 1. Don’t
forget to relate dy to dr.

11.28 For the points (11.393), derive the metric (11.395) with & = 0.

11.29 For the points (11.394), derive the metric (11.395) with £ = —1. Don’t
forget to relate dx to dr.

11.30 Suppose the constant k in the Roberson-Walker metric (11.391 or
11.395) is some number other than 0 or £1. Find a coordinate transfor-
mation such that in the new coordinates, the Roberson-Walker metric
has k = k/|k| = £1. Hint: You also can change the scale factor a.

11.31 Derive the affine connections in Eq.(11.399).

11.32 Derive the affine connections in Eq.(11.400).

11.33 Derive the affine connections in Eq.(11.401).

11.34 Derive the spatial Einstein equation (11.411) from (11.375, 11.395,
11.406, 11.408, & 11.409).

11.35 Assume there had been no inflation, no era of radiation, and no dark
energy. In this case, the magnitude of the difference |2 — 1| would have
increased as t2/3 over the past 13.8 billion years. Show explicitly how
close to unity 2 would have had to have been at ¢ = 1s so as to satisfy
the observational constraint |2y — 1| < 0.036 on the present value of (.

11.36 Derive the relation (11.431) between the energy density p and the
Robertson-Walker scale factor a(t) from the conservation law (11.427)
and the equation of state p = wp.

11.37 Use the Friedmann equations (11.410 & 11.412) for constant p = —p
and k = 1 to derive (11.438) subject to the boundary condition that
a(t) has its minimum at ¢ = 0.

11.38 Use the Friedmann equations (11.410 & 11.412) with w = —1, p con-
stant, and k = —1 to derive (11.439) subject to the boundary condition
that a(0) = 0.

11.39 Use the Friedmann equations (11.410 & 11.412) with w = —1, p
constant, and k = 0 to derive (11.440). Show why a linear combination
of the two solutions (11.440) does not work.

11.40 Use the conservation equation (11.444) and the Friedmann equations
(11.410 & 11.412) with w = 1/3, k = 0, and a(0) = 0 to derive (11.447).

11.41 Show that if the matrix U(z) is nonsingular, then

QU= —Us UL (11.507)

11.42 The gauge-field matrix is a linear combination A = —igt’ AZ of the



