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density

⇢c =
3H2

8⇡G
. (11.418)

The ratio of the energy density ⇢ to the critical energy density is called ⌦

⌦ =
⇢

⇢c
=

8⇡G

3H2
⇢. (11.419)

From (11.417), we see that ⌦ is

⌦ = 1 +
k

(aH)2
= 1 +

k

ȧ2
. (11.420)

Thus ⌦ = 1 both in a flat universe (k = 0) and as aH ! 1. One use of
inflation is to expand a by 1026 so as to force ⌦ almost exactly to unity.
Something like inflation is needed because in a universe in which the

energy density is due to matter and/or radiation, the present value of ⌦

⌦0 = 1.000± 0.036 (11.421)

is unlikely. To see why, we note that conservation of energy ensures that a3

times the matter density ⇢m is constant. Radiation red-shifts by a, so energy
conservation implies that a4 times the radiation density ⇢r is constant. So
with n = 3 for matter and 4 for radiation, ⇢ an ⌘ 3F 2/8⇡G is a constant.
In terms of F and n, Friedmann’s first-order equation (11.415) is

ȧ2 =
8⇡G

3
⇢ a2 � k =

F 2

an�2
� k (11.422)

In the small-a limit of the early Universe, we have

ȧ = F/a(n�2)/2 or a(n�2)/2da = F dt (11.423)

which we integrate to a ⇠ t2/n so that ȧ ⇠ t2/n�1. Now (11.420) says that

|⌦� 1| = 1

ȧ2
/ t2�4/n =

⇢
t radiation
t2/3 matter

. (11.424)

Thus, ⌦ deviated from unity faster than t2/3 during the early Universe. At
this rate, the inequality |⌦0 � 1| < 0.036 could last 13.8 billion years only
if ⌦ at t = 1 second had been unity to within six parts in 1014. The only
known explanation for such early flatness is inflation.
Manipulating our relation (11.420) between ⌦ and aH, we see that

(aH)2 =
k

⌦� 1
. (11.425)

So ⌦ > 1 implies k = 1, and ⌦ < 1 implies k = �1, and as ⌦ ! 1 the
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product aH ! 1, which is the essence of flatness since curvature vanishes
as the scale factor a ! 1. Imagine blowing up a balloon.
Staying for the moment with a universe without inflation and with an

energy density composed of radiation and/or matter, we note that the first-
order equation (11.422) in the form ȧ2 = F 2/an�2 � k tells us that for a
closed (k = 1) universe, in the limit a ! 1 we’d have ȧ2 ! �1 which is im-
possible. Thus a closed universe eventually collapses, which is incompatible
with the flatness (11.425) implied by the present value ⌦0 = 1.000± 0.036.
The first-order equation Friedmann (11.415) says that ⇢ a2 � 3k/8⇡G. So

in a closed universe (k = 1), the energy density ⇢ is positive and increases
without limit as a ! 0 as in a collapse. In open (k < 0) and flat (k = 0) uni-
verses, the same Friedmann equation (11.415) in the form ȧ2 = 8⇡G⇢a2/3�k
tells us that if ⇢ is positive, then ȧ2 > 0, which means that ȧ never vanishes.
Hubble told us that ȧ > 0 now. So if our universe is open or flat, then it
always expands.
Due to the expansion of the universe, the wave-length of radiation grows

with the scale factor a(t). A photon emitted at time t and scale factor a(t)
with wave-length �(t) will be seen now at time t0 and scale factor a(t0) to
have a longer wave-length �(t0)

�(t0)

�(t)
=

a(t0)

a(t)
= z + 1 (11.426)

in which the redshift z is the ratio

z =
�(t0)� �(t)

�(t)
=

��

�
. (11.427)

Now H = ȧ/a = da/(adt) implies dt = da/(aH), and z = a0/a � 1 implies
dz = �a0da/a2, so we find

dt = � dz

(1 + z)H(z)
(11.428)

which relates time intervals to redshift intervals. An on-line calculator is
available for macroscopic intervals (Wright, 2006).
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The 0-component of the energy-momentum conservation law (11.375) is
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0);a = @aT
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ȧ

a
(⇢+ p) . (11.429)
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or
d⇢

da
= �3

a
(⇢+ p) . (11.430)

The energy density ⇢ is composed of fractions ⇢k each contributing its own
partial pressure pk according to its own equation of state

pk = wk⇢k (11.431)

in which wk is a constant. In terms of these components, the energy-
momentum conservation law (11.430) isX

k

d⇢k
da

= �3

a

X
k

(1 + wk) ⇢k (11.432)

with solution
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. (11.433)

Simple cosmological models take the energy density and pressure each to
have a single component with p = w⇢, and in this case

⇢ = ⇢

✓
a

a

◆3(1+w)

= ⇢

✓
a

a

◆3(1+p/⇢)

. (11.434)

Example 11.25 (w = �1/3, No Acceleration) If w = �1/3, then p =
w ⇢ = �⇢/3 and ⇢+3p = 0. The second-order Friedmann equation (11.413)
then tells us that ä = 0. The scale factor does not accelerate.
To find its constant speed, we use its equation of state (11.434)

⇢ = ⇢

✓
a

a

◆3(1+w)

= ⇢

✓
a

a

◆2

. (11.435)

Now all the terms in Friedmann’s first-order equation (11.415) have a com-
mon factor of 1/a2 which cancels leaving us with the square of the constant
speed

ȧ2 =
8⇡G

3
⇢ a2 � k. (11.436)

Incidentally, ⇢ a2 must exceed 3k/8⇡G. The scale factor grows linearly with
time as

a(t) =

✓
8⇡G

3
⇢ a2 � k

◆1/2

(t� t0) + a(t0). (11.437)
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Setting t0 = 0 and a(0) = 0, we use the definition of the Hubble parameter
H = ȧ/a to write the constant linear growth ȧ as aH and the time as

t =

Z a

0
da0/a0H = (1/aH)

Z a

0
da0 = 1/H. (11.438)

So in a universe without acceleration, the age of the universe is the inverse
of the Hubble rate. For our universe, the present Hubble time is 1/H0 =
14.5 billion years, which isn’t far from the actual age of 13.817 ± 0.048
billion years. Presumably, a slower Hubble rate during the era of matter
compensates for the higher rate during the era of dark energy.

Example 11.26 (w = �1, Inflation) Inflation occurs when the ground
state of the theory has a positive and constant energy density ⇢ > 0 that
dwarfs the energy densities of the matter and radiation. The internal en-
ergy of the universe then is proportional to its volume U = ⇢V , and the
pressure p as given by the thermodynamic relation

p = �@U

@V
= �⇢ (11.439)

is negative. The equation of state (11.431) tells us that in this case w = �1.
The second-order Friedmann equation (11.413) becomes

ä

a
= �4⇡G

3
(⇢+ 3p) =

8⇡G⇢

3
⌘ g2 (11.440)

By it and the first-order Friedmann equation (11.415) and by choosing t = 0
as the time at which the scale factor a is minimal, one may show (exercise
11.37) that in a closed (k = 1) universe

a(t) =
cosh g t

g
. (11.441)

Similarly in an open (k = �1) universe with a(0) = 0, we have

a(t) =
sinh g t

g
. (11.442)

Finally in a flat (k = 0) expanding universe, the scale factor is

a(t) = a(0) exp(g t). (11.443)

Studies of the cosmic microwave background radiation suggest that infla-
tion did occur in the very early universe—possibly on a time scale as short
as 10�35 s. What is the origin of the vacuum energy density ⇢ that drove
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inflation? Current theories attribute it to the assumption by at least one
scalar field � of a mean value h�i di↵erent from the one h0|�|0i that min-
imizes the energy density of the vacuum. When h�i settled to h0|�|0i, the
vacuum energy was released as radiation and matter in a Big Bang.

Example 11.27 (w = 1/3, The Era of Radiation) Until a redshift of
z = 3400 or 50,000 years after inflation, our universe was dominated by ra-
diation (Frieman et al., 2008). During The First Three Minutes (Weinberg,
1988) of the era of radiation, the quarks and gluons formed hadrons, which
decayed into protons and neutrons. As the neutrons decayed (⌧ = 885.7
s), they and the protons formed the light elements—principally hydrogen,
deuterium, and helium in a process called big-bang nucleosynthesis.
We can guess the value of w for radiation by noticing that the energy-

momentum tensor of the electromagnetic field (in suitable units)

T ab = F a
cF

bc � 1

4
gabFcdF

cd (11.444)

is traceless

T = T a
a = F a

cF
c

a � 1

4
�aaFcdF

cd = 0. (11.445)

But by (11.412) its trace must be T = 3p� ⇢. So for radiation p = ⇢/3 and
w = 1/3. The relation (11.434) between the energy density and the scale
factor then is

⇢ = ⇢

✓
a

a

◆4

. (11.446)

The energy drops both with the volume a3 and with the scale factor a due
to a redshift; so it drops as 1/a4. Thus the quantity

f2 ⌘ 8⇡G⇢a4

3
(11.447)

is a constant. The Friedmann equations (11.413 & 11.414) now are

ä

a
= �4⇡G

3
(⇢+ 3p) = �8⇡G⇢

3
or ä = �f2

a3
(11.448)

and

ȧ2 + k =
f2

a2
. (11.449)
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With calendars chosen so that a(0) = 0, this last equation (11.449) tells
us that for a flat universe (k = 0)

a(t) = (2f t)1/2 (11.450)

while for a closed universe (k = 1)

a(t) =
q
f2 � (t� f)2 (11.451)

and for an open universe (k = �1)

a(t) =
q

(t+ f)2 � f2 (11.452)

as we saw in (6.422). The scale factor (11.451) of a closed universe of
radiation has a maximum a = f at t = f and falls back to zero at t = 2f .

Example 11.28 (w = 0, The Era of Matter) A universe composed only
of dust or non-relativistic collisionless matter has no pressure. Thus
p = w⇢ = 0 with ⇢ 6= 0, and so w = 0. Conservation of energy (11.433), or
equivalently (11.434), implies that the energy density falls with the volume

⇢ = ⇢

✓
a

a

◆3

. (11.453)

As the scale factor a(t) increases, the matter energy density, which falls
as 1/a3, eventually dominates the radiation energy density, which falls as
1/a4. This happened in our universe about 50,000 years after inflation at
a temperature of T = 9, 400 K or kT = 0.81 eV. Were baryons most
of the matter, the era of radiation dominance would have lasted for a few
hundred thousand years. But the kind of matter that we know about, which
interacts with photons, is only about 15% of the total; the rest—an unknown
substance called dark matter—shortened the era of radiation dominance
by nearly 2 million years.
Since ⇢ / 1/a3, the quantity

m2 =
4⇡G⇢a3

3
(11.454)

is a constant. For a matter-dominated universe, the Friedmann equations
(11.413 & 11.414) then are

ä

a
= �4⇡G

3
(⇢+ 3p) = �4⇡G⇢

3
or ä = �m2

a2
(11.455)
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and

ȧ2 + k = 2m2/a. (11.456)

For a flat universe, k = 0, we get

a(t) =


3mp
2
t

�2/3
. (11.457)

For a closed universe, k = 1, we use example 6.47 to integrate

ȧ =
p
2m2/a� 1 (11.458)

to

t� t0 = �
p
a(2m2 � a) �m2 arcsin(1� a/m2). (11.459)

With a suitable calendar and choice of t0, one may parametrize this solution
in terms of the development angle �(t) as

a(t) = m2 [1� cos�(t)]

t = m2 [�(t)� sin�(t)] . (11.460)

For an open universe, k = �1, we use example 6.48 to integrate

ȧ =
p

2m2/a+ 1 (11.461)

to

t�t0 =
⇥
a(2m2 + a)

⇤1/2�m2 ln
n
2
⇥
a(2m2 + a)

⇤1/2
+ 2a+ 2m2

o
. (11.462)

The conventional parametrization is

a(t) = m2 [cosh�(t)� 1]

t = m2 [sinh�(t)� �(t)] . (11.463)

Transparency: Some 380,000 years after inflation at a redshift of z =
1090, the universe had cooled to about T = 3000 K or kT = 0.26 eV—a tem-
perature at which less than 1% of the hydrogen is ionized. Ordinary matter
became a gas of neutral atoms rather than a plasma of ions and electrons,
and the universe suddenly became transparent to light. Some scientists
call this moment of last scattering or first transparency recombination.
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Example 11.29 (w = �1, The Era of Dark Energy) About 10.3 billion
years after inflation at a redshift of z = 0.30, the matter density falling as
1/a3 dropped below the very small but positive value of the energy den-
sity ⇢v = (2.23 meV)4 of the vacuum. The present time is 13.817 billion
years after inflation. So for the past 3 billion years, this constant energy
density, called dark energy, has accelerated the expansion of the universe
approximately as (11.442)

a(t) = a(tm) exp
⇣
(t� tm)

p
8⇡G⇢v/3

⌘
(11.464)

in which tm = 10.3⇥ 109 years.

Observations and measurements on the largest scales indicate that the
universe is flat: k = 0. So the evolution of the scale factor a(t) is given by
the k = 0 equations (11.443, 11.450, 11.457, & 11.464) for a flat universe.
During the brief era of inflation, the scale factor a(t) grew as (11.443)

a(t) = a(0) exp
⇣
t
p

8⇡G⇢i/3
⌘

(11.465)

in which ⇢i is the positive energy density that drove inflation.
During the 50,000-year era of radiation, a(t) grew as

p
t as in (11.450)

a(t) =
⇣
2 (t� ti)

p
8⇡G⇢(t0r)a

4(t0r)/3
⌘1/2

+ a(ti) (11.466)

where ti is the time at the end of inflation, and t0r is any time during the
era of radiation. During this era, the energy of highly relativistic particles
dominated the energy density, and ⇢a4 / T 4a4 was approximately con-
stant, so that T (t) / 1/a(t) / 1/

p
t. When the temperature was in the

range 1012 > T > 1010K or mµc2 > kT > mec2, where mµ is the mass of
the muon and me that of the electron, the radiation was mostly electrons,
positrons, photons, and neutrinos, and the relation between the time t and
the temperature T was (Weinberg, 2010, ch. 3)

t = 0.994 sec⇥

1010K

T

�2
+ constant. (11.467)

By 109 K, the positrons had annihilated with electrons, and the neutrinos
fallen out of equilibrium. Between 109 K and 106K, when the energy density
of nonrelativistic particles became relevant, the time-temperature relation
was (Weinberg, 2010, ch. 3)

t = 1.78 sec⇥

1010K

T

�2
+ constant0. (11.468)
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During the 10.3 billion years of the matter era, a(t) grew as (11.457)

a(t) =
h
(t� tr)

p
3⇡G⇢(t0m)a(t0m) + a3/2(tr)

i2/3
+ a(tr) (11.469)

where tr is the time at the end of the radiation era, and t0m is any time in
the matter era. By 380,000 years, the temperature had dropped to 3000K,
the universe had become transparent, and the CMBR had begun to travel
freely.
Over the past 3 billion years of the era of vacuum dominance, a(t) has

been growing exponentially (11.464)

a(t) = a(tm) exp
⇣
(t� tm)

p
8⇡G⇢v/3

⌘
(11.470)

in which tm is the time at the end of the matter era, and ⇢v is the density
of dark energy, which while vastly less than the energy density ⇢i that drove
inflation, currently amounts to 68.5% of the total energy density.

11.50 Yang-Mills Theory

The gauge transformation of an abelian gauge theory like electrodynam-
ics multiplies a single charged field by a space-time-dependent phase factor
�0(x) = exp(iq✓(x))�(x). Yang and Mills generalized this gauge transfor-
mation to one that multiplies a vector � of matter fields by a space-time
dependent unitary matrix U(x)

�0
a(x) =

nX
b=1

Uab(x)�b(x) or �0(x) = U(x)�(x) (11.471)

and showed how to make the action of the theory invariant under such non-
abelian gauge transformations. (The fields � are scalars for simplicity.)
Since the matrix U is unitary, inner products like �†(x)�(x) are automat-

ically invariant⇣
�†(x)�(x)

⌘0
= �†(x)U †(x)U(x)�(x) = �†(x)�(x). (11.472)

But inner products of derivatives @i�† @i� are not invariant because the
derivative acts on the matrix U(x) as well as on the field �(x).
Yang and Mills made derivatives Di� that transform like the fields �

(Di�)
0 = U Di�. (11.473)

To do so, they introduced gauge-field matrices Ai that play the role of


