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If F (x) is a vector field, then its invariant description in terms of space-
time-dependent basis vectors ei(x) is

F (x) = F i(x) ei(x). (11.210)

Since the basis vectors ei(x) vary with x, the derivative of F (x) contains
two terms
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In general, the derivative of a vector ei is not a linear combination of the
basis vectors ek. For instance, on the 2-dimensional surface of a sphere in
3-dimensions, the derivative
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points to the sphere’s center and isn’t a linear combination of e✓ and e�.
The inner product of a derivative @ei/@x` with a dual basis vector ek is

the Levi-Civita a�ne connection
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which relates spaces that are tangent to the manifold at infinitesimally sep-
arated points. It is called an a�ne connection because the di↵erent tangent
spaces lack a common origin.

In terms of the a�ne connection (11.213 ), the inner product of the deriva-
tive of (11.211) with ek is
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a combination that is called a covariant derivative (section 11.30)
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It is a second-rank mixed tensor.
Some physicists write the a�ne connection �k
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and call it a Christo↵el symbol of the second kind.


