11.27 Derivatives and Affine Connections 467

11.27 Derivatives and Affine Connections

If F(x) is a vector field, then its invariant description in terms of space-
time-dependent basis vectors e;(x) is

F(z) = F'(z) e;(z). (11.210)

Since the basis vectors e;(z) vary with x, the derivative of F(z) contains
two terms
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In general, the derivative of a vector e; is not a linear combination of the
basis vectors eg. For instance, on the 2-dimensional surface of a sphere in
3-dimensions, the derivative
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points to the sphere’s center and isn’t a linear combination of ey and eg.

The inner product of a derivative de;/dz’ with a dual basis vector e is
the Levi-Civita affine connection
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which relates spaces that are tangent to the manifold at infinitesimally sep-
arated points. It is called an affine connection because the different tangent
spaces lack a common origin.

In terms of the affine connection (11.213 ), the inner product of the deriva-
tive of (11.211) with e is

oF OF" ;
k ok , _ k
e el s +F'e 92l = Bl Iy, F* (11.214)

a combination that is called a covariant derivative (section 11.30)
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It is a second-rank mixed tensor.
Some physicists write the affine connection Ffz as
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and call it a Christoffel symbol of the second kind.
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