Suppose T(y) is a translation that takes a 4-vector x to x+y and T(z) is a translation that takes a 4-vector x to x+z. Then T(z)T(y) and T(y)T(z) both take x to x+y+z. So if a translation $T(y)=T(t,\boldsymbol{y})$ is represented by a unitary operator $U(t,\boldsymbol{y})=\exp(iHt-i\boldsymbol{P}\cdot\boldsymbol{y})$, then the hamiltonian H and the momentum operator \boldsymbol{P} commute with each other

$$[H, P^j] = 0$$
 and $[P^i, P^j] = 0.$ (10.299)

We can figure out the commutation relations of H and P with the angular-momentum J and boost K operators by realizing that $P^a = (H, P)$ is a 4-vector. Let

$$U(\boldsymbol{\theta}, \boldsymbol{\lambda}) = e^{-i\boldsymbol{\theta}\cdot\boldsymbol{J} - i\boldsymbol{\lambda}\cdot\boldsymbol{K}}$$
 (10.300)

be the (infinite-dimensional) unitary operator that represents (in Hilbert space) the infinitesimal Lorentz transformation

$$L = I + \boldsymbol{\theta} \cdot \boldsymbol{R} + \boldsymbol{\lambda} \cdot \boldsymbol{B} \tag{10.301}$$

where \mathbf{R} and \mathbf{B} are the six 4×4 matrices (10.231 & 10.232). Then because P is a 4-vector under Lorentz transformations, we have

$$U^{-1}(\boldsymbol{\theta}, \boldsymbol{\lambda})PU(\boldsymbol{\theta}, \boldsymbol{\lambda}) = e^{+i\boldsymbol{\theta}\cdot\boldsymbol{J} + i\boldsymbol{\lambda}\cdot\boldsymbol{K}}Pe^{-i\boldsymbol{\theta}\cdot\boldsymbol{J} - i\boldsymbol{\lambda}\cdot\boldsymbol{K}} = (I + \boldsymbol{\theta}\cdot\boldsymbol{R} + \boldsymbol{\lambda}\cdot\boldsymbol{B})P$$
(10.302)

or using (10.272)

$$(I + i\boldsymbol{\theta} \cdot \boldsymbol{J} + i\boldsymbol{\lambda} \cdot \boldsymbol{K}) H (I - i\boldsymbol{\theta} \cdot \boldsymbol{J} - i\boldsymbol{\lambda} \cdot \boldsymbol{K}) = H + \boldsymbol{\lambda} \cdot \boldsymbol{P}$$

$$(10.303)$$

$$(I + i\boldsymbol{\theta} \cdot \boldsymbol{J} + i\boldsymbol{\lambda} \cdot \boldsymbol{K}) \boldsymbol{P} (I - i\boldsymbol{\theta} \cdot \boldsymbol{J} - i\boldsymbol{\lambda} \cdot \boldsymbol{K}) = \boldsymbol{P} + H\boldsymbol{\lambda} + \boldsymbol{\theta} \wedge \boldsymbol{P}.$$

Thus, one finds (exercise 10.42) that H is invariant under rotations, while P transforms as a 3-vector

$$[J_i, H] = 0$$
 and $[J_i, P_i] = i\epsilon_{ijk}P_k$ (10.304)

and that

$$[K_i, H] = -iP_i$$
 and $[K_i, P_j] = -i\delta_{ij}H.$ (10.305)

By combining these equations with (10.285), one may write (exercise 10.44) the Lie algebra of the Poincaré group as

$$i[J^{ab}, J^{cd}] = \eta^{bc} J^{ad} - \eta^{ac} J^{bd} - \eta^{da} J^{cb} + \eta^{db} J^{ca}$$

$$i[P^{a}, J^{bc}] = \eta^{ab} P^{c} - \eta^{ac} P^{b}$$

$$[P^{a}, P^{b}] = 0.$$
(10.306)

Further Reading

Exercises 431

The classic Lie Algebras in Particle Physics (Georgi, 1999), which inspired much of this chapter, is outstanding.

Exercises

- 10.1 Show that all $n \times n$ (real) orthogonal matrices O leave invariant the quadratic form $x_1^2 + x_2^2 + \cdots + x_n^2$, that is, that if x' = Ox, then $x'^2 = x^2$.
- 10.2 Show that the set of all $n \times n$ orthogonal matrices forms a group.
- 10.3 Show that all $n \times n$ unitary matrices U leave invariant the quadratic form $|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2$, that is, that if x' = Ux, then $|x'|^2 = |x|^2$.
- 10.4 Show that the set of all $n \times n$ unitary matrices forms a group.
- 10.5 Show that the set of all $n \times n$ unitary matrices with unit determinant forms a group.
- 10.6 Show that the matrix $D_{m'm}^{(j)}(g) = \langle j, m' | U(g) | j, m \rangle$ is unitary because the rotation operator U(g) is unitary $\langle j, m' | U^{\dagger}(g) U(g) | j, m \rangle = \delta_{m'm}$.
- 10.7 Invent a group of order 3 and compute its multiplication table. For extra credit, prove that the group is unique.
- 10.8 Show that the relation (10.20) between two equivalent representations is an isomorphism.
- 10.9 Suppose that D_1 and D_2 are equivalent, finite-dimensional, irreducible representations of a group G so that $D_2(g) = SD_1(g)S^{-1}$ for all $g \in G$. What can you say about a matrix A that satisfies $D_2(g) A = A D_1(g)$ for all $g \in G$?
- 10.10 Find all components of the matrix $\exp(i\alpha A)$ in which

$$A = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}. \tag{10.307}$$

- 10.11 If [A, B] = B, find $e^{i\alpha A}Be^{-i\alpha A}$. Hint: what are the α -derivatives of this expression?
- 10.12 Show that the tensor-product matrix (10.31) of two representations D_1 and D_2 is a representation.
- 10.13 Find a 4×4 matrix S that relates the tensor-product representation $D_{\frac{1}{2} \otimes \frac{1}{2}}$ to the direct sum $D_1 \oplus D_0$.
- 10.14 Find the generators in the adjoint representation of the group with structure constants $f_{abc} = \epsilon_{abc}$ where a, b, c run from 1 to 3. *Hint:* The answer is three 3×3 matrices t_a , often written as L_a .
- 10.15 Show that the generators (10.90) satisfy the commutation relations (10.93).

- 10.16 Show that the demonstrated equation (10.98) implies the commutation relation (10.99).
- 10.17 Use the Cayley-Hamilton theorem (1.264) to show that the 3×3 matrix (10.96) that represents a right-handed rotation of θ radians about the axis θ is given by (10.97).
- 10.18 Verify the mixed Jacobi identity (10.142).
- 10.19 For the group SU(3), find the structure constants f_{123} and f_{231} .
- 10.20 Show that every 2×2 unitary matrix of unit determinant is a quaternion of unit norm.
- 10.21 Show that the quaternions as defined by (10.175) are closed under addition and multiplication and that the product xq is a quaternion if x is real and q is a quaternion.
- 10.22 Show that the one-sided derivative f'(q) (10.184) of the quaternionic function $f(q) = q^2$ depends upon the direction along which $q' \to 0$.
- 10.23 Show that the generators (10.188) of Sp(2n) obey commutation relations of the form (10.189) for some real structure constants f_{abc} and a suitably extended set of matrices A, A', \ldots and S_k, S'_k, \ldots
- 10.24 Show that for $0 < \epsilon \ll 1$, the real $2n \times 2n$ matrix $T = \exp(\epsilon JS)$ in which S is symmetric satisfies $T^{\mathsf{T}}JT = J$ (at least up to terms of order ϵ^2) and so is in Sp(2n, R).
- 10.25 Show that the matrix T of (10.197) is in Sp(2,R).
- 10.26 Use the parametrization (10.217) of the group SU(2), show that the parameters $\boldsymbol{a}(\boldsymbol{c},\boldsymbol{b})$ that describe the product $g(\boldsymbol{a}(\boldsymbol{c},\boldsymbol{b})) = g(\boldsymbol{c}) g(\boldsymbol{b})$ are those of (10.219).
- 10.27 Use formulas (10.219) and (10.212) to show that the left-invariant measure for SU(2) is given by (10.220).
- 10.28 In tensor notation, which is explained in chapter 11, the condition (10.229) that $I + \omega$ be an infinitesimal Lorentz transformation reads $\left(\omega^{\mathsf{T}}\right)_b{}^a = \omega^a{}_b = -\eta_{bc}\,\omega^c{}_d\,\eta^{da}$ in which sums over c and d from 0 to 3 are understood. In this notation, the matrix η_{ef} lowers indices and η^{gh} raises them, so that $\omega_b{}^a = -\omega_{bd}\,\eta^{da}$. (Both η_{ef} and η^{gh} are numerically equal to the matrix η displayed in equation (10.222).) Multiply both sides of the condition (10.229) by $\eta_{ae} = \eta_{ea}$ and use the relation $\eta^{da}\,\eta_{ae} = \eta^d_{\ e} \equiv \delta^d_{\ e}$ to show that the matrix ω_{ab} with both indices lowered (or raised) is antisymmetric, that is,

$$\omega_{ba} = -\omega_{ab} \quad \text{and} \quad \omega^{ba} = -\omega^{ab}.$$
 (10.308)

10.29 Show that the six matrices (10.231) and (10.232) satisfy the SO(3,1) condition (10.229).

Exercises 433

- 10.30 Show that the six generators J and K obey the commutations relations (10.234–10.236).
- 10.31 Show that if J and K satisfy the commutation relations (10.234–10.236) of the Lie algebra of the Lorentz group, then so do J and -K.
- 10.32 Show that if the six generators J and K obey the commutation relations (10.234–10.236), then the six generators J^+ and J^- obey the commutation relations (10.243).
- 10.33 Relate the parameter α in the definition (10.253) of the standard boost B(p) to the 4-vector p and the mass m.
- 10.34 Derive the formulas for $D^{(1/2,0)}(\mathbf{0}, \alpha \hat{\mathbf{p}})$ given in equation (10.254).
- 10.35 Derive the formulas for $D^{(0,1/2)}(\mathbf{0}, \alpha \hat{\boldsymbol{p}})$ given in equation (10.271).
- 10.36 For infinitesimal complex z, derive the 4-vector properties (10.255 & 10.272) of $(-I, \sigma)$ under $D^{(1/2,0)}$ and of (I, σ) under $D^{(0,1/2)}$.
- 10.37 Show that under the unitary Lorentz transformation (10.257), the action density (10.258) is Lorentz covariant (10.259).
- 10.38 Show that under the unitary Lorentz transformation (10.273), the action density (10.274) is Lorentz covariant (10.275).
- 10.39 Show that under the unitary Lorentz transformations (10.257 & 10.273), the Majorana mass terms (10.266 & 10.279) are Lorentz covariant.
- 10.40 Show that the definitions of the gamma matrices (10.281) and of the generators (10.283) imply that the gamma matrices transform as a 4-vector under Lorentz transformations (10.284).
- 10.41 Show that (10.283) and (10.284) imply that the generators J^{ab} satisfy the commutation relations (10.285) of the Lorentz group.
- 10.42 Show that the spinor $\zeta = \sigma_2 \xi^*$ defined by (10.295) is right handed (10.273) if ξ is left handed (10.257).
- 10.43 Use (10.303) to get (10.304 & 10.305).
- 10.44 Derive (10.306) from (10.285, 10.299, 10.304, & 10.305).