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Suppose T'(y) is a translation that takes a 4-vector x to x +y and T'(z) is
a translation that takes a 4-vector x to x4+ 2. Then T'(2)T'(y) and T'(y)7T'(2)
both take z to = +y + z. So if a translation T'(y) = T'(¢,y) is represented
by a unitary operator U(t,y) = exp(iHt — iP - y), then the hamiltonian H
and the momentum operator P commute with each other

[H,P']=0 and [P’ P’]=0. (10.299)

We can figure out the commutation relations of H and P with the angular-
momentum J and boost K operators by realizing that P* = (H, P) is a
4-vector. Let

U0, \) = e 0 T-iXK (10.300)

be the (infinite-dimensional) unitary operator that represents (in Hilbert
space) the infinitesimal Lorentz transformation

L=I+6-R+\-B (10.301)

where R and B are the six 4 x 4 matrices (10.231 & 10.232). Then because
P is a 4-vector under Lorentz transformations, we have

U*l(e,A)PU(G’ )\) — 6+i0-J+i)\-KPefi9-in}\-K _ (I +0-R+)\- B) P
(10.302)
or using (10.272)
(I+i0-J+iX-K)H(I—i0-J—ix-K)=H+X-P  (10.303)
(I+i0-J+iX-K)P(I—i0-J—iX-K)=P+H\+60AP.
Thus, one finds (exercise 10.42) that H is invariant under rotations, while
P transforms as a 3-vector

[Ji, H] =0 and [Ju PJ] = ieijkpk (10.304)
and that

By combining these equations with (10.285), one may write (exercise 10.44)
the Lie algebra of the Poincaré group as

i[Jab, ch} — nbc Jad . nac de o 77da Jcb + ndb Jea
i[Pa, ch} — nach _ nach
[P, P’] = 0. (10.306)

Further Reading
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The classic Lie Algebras in Particle Physics (Georgi, 1999), which inspired
much of this chapter, is outstanding.

Exercises

10.1 Show that all n x n (real) orthogonal matrices O leave invariant the
quadratic form z?+z3+- - - +x2, that is, that if 2’ = Ox, then 22 = 22

10.2 Show that the set of all n x n orthogonal matrices forms a group.

10.3 Show that all n X n unitary matrices U leave invariant the quadratic
form |z1|?+|xo|? +- - -+ |z,|?, that is, that if 2’ = Uz, then |2/|? = |z|?.

10.4 Show that the set of all n X n unitary matrices forms a group.

10.5 Show that the set of all n X n unitary matrices with unit determinant
forms a group. A

10.6 Show that the matrix Dq(?i,)m(g) = (j,m'|U(g)|j,m) is unitary because
the rotation operator U(g) is unitary (j,m/|UT(g)U(g)|4, m) = Gpmim-

10.7 Invent a group of order 3 and compute its multiplication table. For
extra credit, prove that the group is unique.

10.8 Show that the relation (10.20) between two equivalent representations
is an isomorphism.

10.9 Suppose that D; and Dy are equivalent, finite-dimensional, irreducible
representations of a group G so that Do(g) = SD1(g)S~! forall g € G.
What can you say about a matrix A that satisfies Da(g) A = A D1(g)
for all g € G7

10.10 Find all components of the matrix exp(iaA) in which

—1

0
A= (o (10.307)
i

o O O

0

0

10.11 If [A, B] = B, find ¢*4Be~*4, Hint: what are the a-derivatives of
this expression?

10.12 Show that the tensor-product matrix (10.31) of two representations
D1 and Ds is a representation.

10.13 Find a 4 x 4 matrix S that relates the tensor-product representation
D1®1 to the direct sum D1 @& Dy.

10.14 F21nc21 the generators in the adjoint representation of the group with
structure constants fu,p. = €45 Where a, b, ¢ run from 1 to 3. Hint: The
answer is three 3 x 3 matrices t,, often written as L.

10.15 Show that the generators (10.90) satisfy the commutation relations
(10.93).
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10.16 Show that the demonstrated equation (10.98) implies the commuta-
tion relation (10.99).

10.17 Use the Cayley-Hamilton theorem (1.264) to show that the 3 x 3
matrix (10.96) that represents a right-handed rotation of 6 radians
about the axis 6 is given by (10.97).

10.18 Verify the mixed Jacobi identity (10.142).

10.19 For the group SU(3), find the structure constants fi23 and fas;.

10.20 Show that every 2 x 2 unitary matrix of unit determinant is a quater-
nion of unit norm.

10.21 Show that the quaternions as defined by (10.175) are closed under
addition and multiplication and that the product zq is a quaternion if
x is real and ¢ is a quaternion.

10.22 Show that the one-sided derivative f’(q) (10.184) of the quaternionic
function f(q) = ¢* depends upon the direction along which ¢’ — 0.

10.23 Show that the generators (10.188) of Sp(2n) obey commutation rela-
tions of the form (10.189) for some real structure constants fup. and a
suitably extended set of matrices A, A’, ...and S, S}, ....

10.24 Show that for 0 < € < 1, the real 2n x 2n matrix 7' = exp(eJS) in
which S is symmetric satisfies TT.JT = J (at least up to terms of order
€2) and so is in Sp(2n, R).

10.25 Show that the matrix T of (10.197) is in Sp(2, R).

10.26 Use the parametrization (10.217) of the group SU(2), show that the
parameters a(c, b) that describe the product g(a(e, b)) = g(c) g(b) are
those of (10.219).

10.27 Use formulas (10.219) and (10.212) to show that the left-invariant
measure for SU(2) is given by (10.220).

10.28 In tensor notation, which is explained in chapter 11, the condition
(10.229) that I + w be an infinitesimal Lorentz transformation reads
(wT)ba =wh = — Mpewy n® in which sums over ¢ and d from 0 to 3
are understood. In this notation, the matrix 7.y lowers indices and noh
raises them, so that w,* = — wyq nlae. (Both 7¢ and n9" are numeri-
cally equal to the matrix 7 displayed in equation (10.222).) Multiply
both sides of the condition (10.229) by 74e = 7., and use the relation
% nee = n%, = 6%, to show that the matrix wy, with both indices
lowered (or raised) is antisymmetric, that is,

Why = —wap and w = — w®. (10.308)

10.29 Show that the six matrices (10.231) and (10.232) satisfy the SO(3,1)
condition (10.229).
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10.30 Show that the six generators J and K obey the commutations rela-
tions (10.234-10.236).

10.31 Show that if J and K satisfy the commutation relations (10.234-
10.236) of the Lie algebra of the Lorentz group, then so do J and — K.

10.32 Show that if the six generators J and K obey the commutation re-
lations (10.234-10.236), then the six generators J and J~ obey the
commutation relations (10.243).

10.33 Relate the parameter « in the definition (10.253) of the standard
boost B(p) to the 4-vector p and the mass m.

10.34 Derive the formulas for D(*/29(0, a p) given in equation (10.254).

10.35 Derive the formulas for D(%1/2)(0, ap) given in equation (10.271).

10.36 For infinitesimal complex z, derive the 4-vector properties (10.255 &
10.272) of (—I,o) under D(/29) and of (I, o) under D(:1/2),

10.37 Show that under the unitary Lorentz transformation (10.257), the
action density (10.258) is Lorentz covariant (10.259).

10.38 Show that under the unitary Lorentz transformation (10.273), the
action density (10.274) is Lorentz covariant (10.275).
10.39 Show that under the unitary Lorentz transformations (10.257 & 10.273),
the Majorana mass terms (10.266 & 10.279) are Lorentz covariant.
10.40 Show that the definitions of the gamma matrices (10.281) and of the
generators (10.283) imply that the gamma matrices transform as a 4-
vector under Lorentz transformations (10.284).

10.41 Show that (10.283) and (10.284) imply that the generators J satisfy
the commutation relations (10.285) of the Lorentz group.

10.42 Show that the spinor { = 02£* defined by (10.295) is right handed
(10.273) if £ is left handed (10.257).

10.43 Use (10.303) to get (10.304 & 10.305).

10.44 Derive (10.306) from (10.285, 10.299, 10.304, & 10.305).



