relations (10.235-10.237), then so do

$$
\begin{equation*}
\boldsymbol{J} \text { and }-\boldsymbol{K} . \tag{10.238}
\end{equation*}
$$

The infinitesimal Lorentz transformation (10.234) is the 4×4 matrix

$$
L=I+\omega=I+\theta_{\ell} R_{\ell}+\lambda_{j} B_{j}=\left(\begin{array}{cccc}
1 & \lambda_{1} & \lambda_{2} & \lambda_{3} \tag{10.239}\\
\lambda_{1} & 1 & -\theta_{3} & \theta_{2} \\
\lambda_{2} & \theta_{3} & 1 & -\theta_{1} \\
\lambda_{3} & -\theta_{2} & \theta_{1} & 1
\end{array}\right) .
$$

It moves any 4 -vector x to $x^{\prime}=L x$ or in components $x^{\prime a}=L^{a}{ }_{b} x^{b}$

$$
\begin{align*}
x^{0} & =x^{0}+\lambda_{1} x^{1}+\lambda_{2} x^{2}+\lambda_{3} x^{3} \\
x^{\prime 1} & =\lambda_{1} x^{0}+x^{1}-\theta_{3} x^{2}+\theta_{2} x^{3} \\
x^{\prime 2} & =\lambda_{2} x^{0}+\theta_{3} x^{1}+x^{2}-\theta_{1} x^{3} \\
x^{\prime 3} & =\lambda_{3} x^{0}-\theta_{2} x^{1}+\theta_{1} x^{2}+x^{3} . \tag{10.240}
\end{align*}
$$

More succinctly with $t=x^{0}$, this is

$$
\begin{align*}
t^{\prime} & =t+\boldsymbol{\lambda} \cdot \boldsymbol{x} \\
\boldsymbol{x}^{\prime} & =\boldsymbol{x}+t \boldsymbol{\lambda}+\boldsymbol{\theta} \wedge \boldsymbol{x} \tag{10.241}
\end{align*}
$$

in which $\wedge \equiv \times$ means cross-product.
For arbitrary real $\boldsymbol{\theta}$ and $\boldsymbol{\lambda}$, the matrices

$$
\begin{equation*}
L=e^{-i \theta_{\ell} J_{\ell}-i \lambda_{\ell} K_{\ell}} \tag{10.242}
\end{equation*}
$$

form the subgroup of $S O(3,1)$ that is connected to the identity matrix I. This subgroup preserves the sign of the time of any time-like vector, that is, if $x^{2}<0$, and $y=L x$, then $y^{0} x^{0}>0$. It is called the proper orthochronous Lorentz group. The rest of the (homogeneous) Lorentz group can be obtained from it by space \mathcal{P}, time \mathcal{T}, and space-time $\mathcal{P} \mathcal{T}$ reflections.

The task of finding all the finite-dimensional irreducible representations of the proper orthochronous homogeneous Lorentz group becomes vastly simpler when we write the commutation relations (10.235-10.237) in terms of the hermitian matrices

$$
\begin{equation*}
J_{\ell}^{ \pm}=\frac{1}{2}\left(J_{\ell} \pm i K_{\ell}\right) \tag{10.243}
\end{equation*}
$$

which generate two independent rotation groups

$$
\begin{align*}
{\left[J_{i}^{+}, J_{j}^{+}\right] } & =i \epsilon_{i j k} J_{k}^{+} \\
{\left[J_{i}^{-}, J_{j}^{-}\right] } & =i \epsilon_{i j k} J_{k}^{-} \\
{\left[J_{i}^{+}, J_{j}^{-}\right] } & =0 . \tag{10.244}
\end{align*}
$$

Thus the Lie algebra of the Lorentz group is equivalent to two copies of the Lie algebra (10.100) of $S U(2)$. Its finite-dimensional irreducible representations are the direct products

$$
\begin{equation*}
D^{\left(j, j^{\prime}\right)}(\boldsymbol{\theta}, \boldsymbol{\lambda})=e^{-i \theta_{\ell} J_{\ell}-i \lambda_{\ell} K_{\ell}}=e^{\left(-i \theta_{\ell}-\lambda_{\ell}\right) J_{\ell}^{+}} e^{\left(-i \theta_{\ell}+\lambda_{\ell}\right) J_{\ell}^{-}} \tag{10.245}
\end{equation*}
$$

of the nonunitary representations $D^{(j, 0)}(\boldsymbol{\theta}, \boldsymbol{\lambda})=e^{\left(-i \theta_{\ell}-\lambda_{\ell}\right) J_{\ell}^{+}}$and $D^{\left(0, j^{\prime}\right)}(\boldsymbol{\theta}, \boldsymbol{\lambda})=$ $e^{\left(-i \theta_{\ell}+\lambda_{\ell}\right) J_{\ell}^{-}}$generated by the three $(2 j+1) \times(2 j+1)$ matrices J_{ℓ}^{+}and by the three $\left(2 j^{\prime}+1\right) \times\left(2 j^{\prime}+1\right)$ matrices J_{ℓ}^{-}. Under a Lorentz transformation L, a field $\psi_{m, m^{\prime}}^{\left(j, j^{\prime}\right)}(x)$ that transforms under the $D^{\left(j, j^{\prime}\right)}$ representation of the Lorentz group responds as

$$
\begin{equation*}
U(L) \psi_{m, m^{\prime}}^{\left(j, j^{\prime}\right)}(x) U^{-1}(L)=D_{m m^{\prime \prime}}^{(j, 0))}\left(L^{-1}\right) D_{m^{\prime} m^{\prime \prime \prime}}^{\left(0, j^{\prime}\right)}\left(L^{-1}\right) \psi_{m^{\prime \prime}, m^{\prime \prime \prime}}^{\left(j, j^{\prime}\right.}(L x) \tag{10.246}
\end{equation*}
$$

Although these representations are not unitary, the $S O(3)$ subgroup of the Lorentz group is represented unitarily by the hermitian matrices

$$
\begin{equation*}
\boldsymbol{J}=\boldsymbol{J}^{+}+\boldsymbol{J}^{-} \tag{10.247}
\end{equation*}
$$

Thus, the representation $D^{\left(j, j^{\prime}\right)}$ describes objects of the spins s that can arise from the direct product of spin- j with spin- j^{\prime} (Weinberg, 1995, p. 231)

$$
\begin{equation*}
s=j+j^{\prime}, j+j^{\prime}-1, \ldots,\left|j-j^{\prime}\right| . \tag{10.248}
\end{equation*}
$$

For instance, $D^{(0,0)}$ describes a spinless field or particle, while $D^{(1 / 2,0)}$ and $D^{(0,1 / 2)}$ respectively describe left-handed and right-handed spin- $1 / 2$ fields or particles. The representation $D^{(1 / 2,1 / 2)}$ describes objects of spin 1 and spin 0 - the spatial and time components of a 4 -vector.

The generators K_{j} of the Lorentz boosts are related to $\boldsymbol{J}^{ \pm}$by

$$
\begin{equation*}
\boldsymbol{K}=-i \boldsymbol{J}^{+}+i \boldsymbol{J}^{-} \tag{10.249}
\end{equation*}
$$

which like (10.247) follows from the definition (10.243).
The interchange of \boldsymbol{J}^{+}and \boldsymbol{J}^{-}replaces the generators \boldsymbol{J} and \boldsymbol{K} with \boldsymbol{J} and $-\boldsymbol{K}$, a substitution that we know (10.238) is legitimate.

10.32 Two-Dimensional Representations of the Lorentz Group

The generators of the representation $D^{(1 / 2,0)}$ with $j=1 / 2$ and $j^{\prime}=0$ are given by ($10.247 \& 10.249$) with $\boldsymbol{J}^{+}=\boldsymbol{\sigma} / 2$ and $\boldsymbol{J}^{-}=0$. They are

$$
\begin{equation*}
\boldsymbol{J}=\frac{1}{2} \boldsymbol{\sigma} \quad \text { and } \quad \boldsymbol{K}=-i \frac{1}{2} \boldsymbol{\sigma} . \tag{10.250}
\end{equation*}
$$

