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Figure 8.2 CMB temperature fluctuations over the celestial sphere as mea-
sured by the Planck satellite. The average temperature is 2.7255 K. White
regions are warmer and black ones colder by about 0.0005 degrees. c� ESA
and the Planck Collaboration.

P`(n̂ · n̂0) of the cosine n̂ · n̂0 in which the polar angles of the unit vec-
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Example 8.8 (CMB Radiation) Instruments on the Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck satellites in orbit at the Lagrange
point L

2

(in the Earth’s shadow, 1.5⇥106 km farther from the Sun) have
measured the temperature T (✓,�) of the cosmic microwave background
(CMB) radiation as a function of the polar angles ✓ and � in the sky as
shown in Fig. 8.2. This radiation is photons last scattered when the visible
universe became transparent at an age of 380,000 years and a temperature
(3,000 K) cool enough for hydrogen atoms to be stable. This initial tran-
parency is usually (and inexplicably) called recombination.

Since the spherical harmonics Y`,m(✓,�) are complete on the sphere, we
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Figure 8.3 The power spectrum D` = `(` + 1)C`/2⇡ of the CMB tem-
perature fluctuations in µK2 as measured by the Planck Collaboration
(arXiv:1303.5062) is plotted against the angular size and the multipole
moment `. The solid curve is the ⇤CDM prediction.

can expand the temperature as
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in which the coe�cients are by (8.117)
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The average temperature T contributes only to a
0,0 = T = 2.7255 K.

The other coe�cients describe the di↵erence �T (✓,�) = T (✓,�) � T . The
angular power spectrum is
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If we let the unit vector n̂ point in the direction ✓,� and use the addition
theorem (8.121), then we can write the angular power spectrum as
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In Fig. 8.3, the measured values (arXiv:1303.5062) of the power spectrum
D` = `(` + 1)C`/2⇡ are plotted against ` for 1 < ` < 1300 with the angles
and distances decreasing with `. The power spectrum is a snapshot at the
moment of initial transparency of the temperature distribution of the plasma
of photons, electrons, and nuclei undergoing acoustic oscillations. In these
oscillations, gravity opposes radiation pressure, and |�T (✓,�)| is maximal
both when the oscillations are most compressed and when they are most
rarefied. Regions that gravity has squeezed to maximum compression at
transparency form the first and highest peak. Regions that have bounced
o↵ their first maximal compression and that radiation pressure has expanded
to minimum density at transparency form the second peak. Those at their
second maximum compression at transparency form the third peak, and so
forth.
The solid curve is the prediction of a model with inflation, cold dark

matter, and a cosmological constant ⇤. In this model, the age of the
visible universe is 13.817 Gyr; theHubble constant isH

0

= 67.3 km/sMpc;
the energy density of the universe is enough to make the universe flat; and
the fractions of the energy density due to baryons, dark matter, and dark
energy are 4.9%, 26.6%, and 68.5% (Edwin Hubble 1889–1953).

Much is known about Legendre functions. The books A Course of Modern
Analysis (Whittaker and Watson, 1927, chap. XV) and Methods of Mathe-
matical Physics (Courant and Hilbert, 1955) are outstanding.

Exercises

8.1 Use conditions (8.6) and (8.7) to find P
0

(x) and P
1

(x).

8.2 Using the Gram-Schmidt method (section 1.10) to turn the functions
xn into a set of functions Ln(x) that are orthonormal on the interval
[�1, 1] with inner product (8.2), find Ln(x) for n = 0, 1, 2, and 3. Isn’t
Rodrigues’s formula (8.8) easier to use?

8.3 Derive the conditions (8.6–8.7) on the coe�cients ak of the Legendre
polynomial Pn(x) = a

0

+ a
1

x+ · · ·+ anxn.

8.4 Use equations (8.6–8.7) to find P
3

(x) and P
4

(x).

8.5 In superscript notation (6.19), Leibniz’s rule (4.46) for derivatives of
products u v of functions is
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◆
u(n�k) v(k). (8.126)


