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SUMMARY

Optimal exploitation of the expanding database of sequences requires rapid finding and
folding of RNAs. Methods are reviewed that automate folding and discovery of RNAs with
algorithms that couple thermodynamics with chemical mapping, NMR, and/or sequence
comparison. New functional noncoding RNAs in genome sequences can be found by combin-
ing sequence comparison with the assumption that functional noncoding RNAs will have
more favorable folding free energies than other RNAs. When a new RNA is discovered, experi-
ments and sequence comparison can restrict folding space so that secondary structure can
be rapidly determined with the help of predicted free energies. In turn, secondary structure
restricts folding in three dimensions, which allows modeling of three-dimensional structure.
An example from a domain of a retrotransposon is described. Discovery of new RNAs and
their structures will provide insights into evolution, biology, and design of therapeutics.
Applications to studies of evolution are also reviewed.

Outline

1 Folding RNA into secondary structures

2 Restraining folding space

3 Automating comparative sequence analysis

4 Finding Functional RNA

5 Future directions

6 Application to the study of evolution

References

Editors: John F. Atkins, Raymond F. Gesteland, and Thomas R. Cech

Additional Perspectives on RNA Worlds available at www.cshperspectives.org

Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a003665

Cite as Cold Spring Harb Perspect Biol 2010;2:a003665

1



Cellular RNA was considered merely an intermediate be-
tween DNA and protein for much of the history of mo-
lecular biology (except in RNA viruses). The discovery of
catalytic RNA showed that this schema had to be revised.
The finding that RNA could possess functionality once be-
lieved to be the sole domain of protein enzymes, led to the
hypothesis that RNA could have preceded protein and
DNA in an “RNAWorld.” Echoes of the RNAworld remain
in that RNA continues to perform functions developed
early in evolution, e.g., as the catalyst for protein synthesis
(Moore and Steitz 2010). There is recent evidence that an
unexpectedly large fraction of DNA in higher eukaryotes,
perhaps 90%, is transcribed into RNA (Birney et al.
2007). A positive correlation between an increased propor-
tion of noncoding versus coding RNA and an organism’s
developmental complexity has been observed (Taft and
Mattick 2003). This trend has been suggested to mean
that noncoding RNA represents a “new genetics” and
may very well be the engine of eukaryotic complexity (Mat-
tick 2004). RNA may have evolved and may continue to
evolve many yet unknown functions. Evolution may be
slow to eliminate nonfunctional RNAs. RNAs without
current function, however, may constitute a pool of mole-
cules that might be adapted to fill novel roles, such as gene
regulatory elements or defenses against transposons and
viruses. One of the themes of this article is to describe
methods for finding functional RNAs and their structures,
which in turn can reveal structure-function and evolution-
ary relationships.

Evolution is restrained by fundamental chemical and
physical principles of which thermodynamics is one.
Although much of the sequence dependence of RNA
thermodynamics is unknown, for RNA sequences of fewer
than 700 nucleotides it is possible to correctly predict
roughly 70% of secondary structure from thermodynamics
alone (Mathews et al. 2004). This success suggests that ther-
modynamics is a major determinant of secondary structure
and thus of evolution of structured RNAs. Perhaps thermo-
dynamics was particularly important in the early stages of
evolution when RNA molecules had a high degree of struc-
tural plasticity. Once a functional structure was generated
in an evolving population of RNAs, there would be a driv-
ing force for stabilizing that particular structure over alter-
native folds in the population. Thus, structures developed
early in evolution may be determined more by free energy
minimization of the RNA than structures developed later.
For example, later structures may depend more on the ki-
netics of folding and on interaction with proteins. Our
understanding of evolution and structure at the molecular
level is still evolving and currently somewhat primitive.

A second theme of this article is overcoming cur-
rent limitations through the combined application of

thermodynamics, sequence comparison, and experiment
to rapidly model RNA secondary structures. The methods
facilitate finding RNA sequences with functions that rely on
secondary structure.

1 FOLDING RNA INTO SECONDARY STRUCTURES

1.1 Free Energy Minimization

If folding was determined by thermodynamics alone and if
the sequence dependence of thermodynamics was com-
pletely understood, then it would be possible to predict
secondary structure from sequence alone. For a unimolec-
ular reaction such as the folding of an RNA molecule:

U$ F K ¼ ½F�=½U� ¼ e�DG8=RT:

Here, K is the equilibrium constant giving the ratio of
concentrations for folded, F, and unfolded, U, species at
equilibrium; DG8 is the standard free energy difference
between F and U; R is the gas constant; and T is the temper-
ature in kelvins. The challenge of predicting secondary
structure from thermodynamics is to find the base-pairing
that gives the lowest free energy change in going from the
unfolded to folded state, and therefore the highest concen-
tration of folded species. Generally this search is accom-
plished with a dynamic programming algorithm, a type
of recursive algorithm that is commonly used to solve op-
timization problems in biology (e.g., sequence alignment)
and elsewhere. Dynamic programming can implicitly
search the entire set of possible RNA secondary structures
to find the lowest free energy structure without the neces-
sity of generating all structures explicitly. The free energy
change is typically approximated with a nearest neighbor
model in which the DG8 is the sum of free energy incre-
ments for the various nearest neighbor motifs (e.g., stacked
base pairs in an RNA helix) that occur in a structure
(Turner 2000; Mathews et al. 2005). Parameters for the
nearest neighbor increments have been experimentally de-
termined by optical melting studies (Xia et al. 1998; Turner
2000; Mathews et al. 2004), by relating parameters to the
number of occurrences of various motifs in known secon-
dary structures (Do et al. 2006), by optimizing parameters
to predict known secondary structures (Ninio 1979;
Papanicolaou et al. 1984), or by some combination of the
previous (Jaeger et al. 1989; Mathews et al. 1999; Andro-
nescu et al. 2007).

1.2 Partition Functions and Probabilities

Because the accuracy of secondary structure prediction is
limited in part by an incomplete knowledge of the folding
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rules, there is significant interest in determining the quality
of predictions. One approach to estimating the quality of
prediction is to assign a probability to the prediction using
a partition function.

The partition function, Q, contains a description of
the ensemble thermodynamic properties of a system and
is defined as the sum of the equilibrium constants for all
possible secondary structures of a given sequence. The frac-
tion of strands that will fold into a particular structure is the
equilibrium constant for that structure, divided by Q.
Counter-intuitively, the lowest free energy structure often
occurs with a vanishingly small probability. For example,
given the calculated partition function for the Tetrahymena
group I intron (1.8 � 10107), the probability that a strand
folds into its predicted minimum free energy structure is
1 in 760 million. Many base pairs, however, are common
to a large number of the low free energy structures. These
common pairs are well represented in the structural ensem-
ble and thus can have high pairing probability. In fact, 80
base pairs out of 144 predicted for the Tetrahymena group
I intron have 90% or higher pairing probability.

Using probabilistic methods, three approaches are tak-
en to enhance the information provided by structure pre-
diction. The first is to predict the lowest free energy
structure and then color annotate the structure with base
pairing probabilities (Mathews 2004). Pairs of higher
probability are more likely to be correctly predicted pairs
(Mathews 2004). Therefore, the user can have greater
confidence in the highly probable pairs (.90%) being
truly informative of native secondary structure.

A second approach is to simply assemble structures of
highly probable pairs (Mathews 2004). For example, struc-
tures can be assembled of pairs that exceed a given pairing
probability threshold. These are valid structures, i.e., a nu-
cleotide will only pair with up to one other nucleotide, if
the threshold is set at 50% pairing probability or higher.
The quality of the predicted pairs is high, but these struc-
tures are generally not saturated with pairs (Mathews
2004). Alternatively, structures can be assembled using
the most probable pairs using a dynamic programming al-
gorithm (Do et al. 2006; Hamada et al. 2009; Lu et al. 2009).
These structures are called maximum expected accuracy
structures.

A third approach is to sample structures from the fold-
ing ensemble according to their probability of occurring,
using stochastic sampling (Ding and Lawrence 2003).
The sampled structures can be analyzed to determine
base pairing probabilities. Additionally, predicted struc-
tures can be clustered. A representative structure, called a
centroid, of the most populated cluster can be a more accu-
rate prediction of the native structure than the predicted
lowest free energy structure (Ding et al. 2005). Stochastic

sampling and clustering are especially useful for analyzing
an RNA that natively populates more than one structure,
e.g., a riboswitch sequence, because each structure should
appear as a distinct cluster.

1.3 Available Programs

Table 1 summarizes some of the available computer pro-
grams for RNA secondary structure prediction and their
features. This list is confined to those that predict struc-
ture based on thermodynamics, although alternative ap-
proaches based on reproducing structural features in the
database of known structures also show promise (Dowell
and Eddy 2004; Do et al. 2006).

2 RESTRAINING FOLDING SPACE

Free energy minimization alone typically predicts cor-
rectly only about 70% of secondary structure. There are
several reasons for the limited accuracy. For example, fold-
ing may not be determined only by thermodynamics, the
sequence dependence of free energy changes is far from
completely known, and the folding space for RNA is enor-
mous; an RNA of n nucleotides has 1.8n possible secondary
structures (Zuker and Sankoff 1984). Finding the correct
secondary structure can be compared to the difficulty of
using random keystrokes to type correctly a sentence with
28 letters and spaces. This would take 2728, or about 1040,
keystrokes. If, however, a letter is fixed whenever it is typed
correctly, then it would only take a few thousand key-
strokes (Dawkins 1987; Zwanzig et al. 1992). There are
only 4 letters in the RNA alphabet and the “words” are he-
lixes and loops. In an analogous way, knowing that a given
nucleotide is in a base pair or a loop greatly reduces the
remaining folding space. Thus, the folding problem
becomes tractable if there are ways to deduce when a base

Table 1. Secondary structure prediction programs. This table provides
a list of software packages that predict secondary structures using
thermodynamics

Program: URL: Features:

RNAstructure http://rna.urmc.
rochester.edu/
RNAstructure.html

JAVA/Windows
Graphical User
Interface; Command
Line Interface; C++
Class Library

Sfold http://sfold.
wadsworth.org/

Web server

UNAFold/
mfold

http://mfold.bioinfo.
rpi.edu/

Web server; Command
Line Interface

Vienna RNA
Package

http://www.tbi.univie.
ac.at/RNA/

Web server; Command
Line Interface; C
Function Library
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pair or loop is correct. Several approaches for this are de-
scribed below.

2.1 Experiments

Experiments can provide constraints and restraints to re-
duce folding space. The methods most commonly used
employ chemical modification of bases (Inoue and Cech
1985; Moazed et al. 1986; Ehresmann et al. 1987; Mathews
et al. 2004) or ribose sugars (Merino et al. 2005; Deigan
et al. 2009) to identify nucleotides that are unpaired or in
loosely structured regions. Modified sites can be rapidly
read out by primer extension using reverse transcriptase,
which will stop at the base 30 of the modified site. By using
multiple primers, any length RNA can be interrogated.
Chemical agents are useful for restraining unpaired or
loosely paired bases. Nuclear magnetic resonance (NMR)
spectra can be used to constrain base paired nucleotides
(Hart et al. 2008).

Dimethyl sulfate (DMS), 1-cyclohexyl-3-(2-morpholi-
noethyl)carbodiimide metho-p-toluenesulfanate (CMCT),
and kethoxal react with the Watson-Crick faces of A and
C, U, and G, respectively. DMS is of special use as it can
be applied in living cells for in vivo mapping of truly native
RNA structures (Harris et al. 1995; Zaug and Cech 1995).
Chemical reactivity has been applied as a constraint in
the RNAstructure folding program (Mathews et al. 2004).
The constraint applied is that a base that reacts cannot
be in a Watson-Crick pair flanked by Watson-Crick pairs
(Fig. 1). The same constraint can be applied for reactivity
that cleaves the backbone in loops: such as with Pb2+ (Lin-
dell et al. 2002) or with hydrolysis (Li and Breaker 1999;
Soukup and Breaker 1999).

N-methylisotoic anhydride (NMIA) and related mole-
cules react with flexible ribose groups (Merino et al. 2005;
Mortimer and Weeks 2007). Thus, reactive nucleotides are
presumably not in strong Watson-Crick pairs or rigid
tertiary interactions. Reactivity is less sensitive to local
environment than that of DMS, CMCT, and kethoxal
(Wilkinson et al. 2009), presumably because the electro-
static environment of the sugars is more uniform than
that of the bases. Because this “SHAPE” chemistry inter-
rogates the ribose of every nucleotide, relative reactivity
can be assigned to every nucleotide. Readout by capillary
gel electrophoresis has provided quantification that allows
relative reactivity to be used as restraints. That is, relative
reactivity provides a measure of the likelihood of a nucleo-
tide being unpaired or paired, rather than an absolute
constraint (Fig. 1). This allows lack of reactivity to be inter-
preted as a favorable likelihood for Watson-Crick base
pairing (Deigan et al. 2009). Although lack of reactivity may
also reflect strong tertiary interactions, runs of consecutive

Watson-Crick base pairs in helixes are usually longer than
consecutive tertiary interactions so that helixes are favored
more by the enhancement in the probability increment for
Watson-Crick base pairing.

NMR interrogates the chemical environment of nuclei.
The chemical shifts of an imino hydrogen proton and the
attached nitrogen nucleus provide a signature that identi-
fies whether the imino proton is in a Watson-Crick GC,
AU, or wobble GU pair. Because the imino protons are
close to each other in the middle of a helix, they can ex-
change energy, which is measurable using two-dimensional
NMR spectroscopy. Thus, it is possible to determine
that helixes with certain sequences of base pairs must be
present in the secondary structure. This provides informa-
tion complementary to chemical modification, which
identifies unpaired nucleotides most definitively. An algo-
rithm for NMR assisted prediction of secondary structure
(NAPSS) is available (Hart et al. 2008). Because the method
identifies double helixes, it is especially effective for reveal-
ing pseudoknots. It also provides a few initial assignments
of resonances, which can facilitate determination of three-
dimensional structure. It is limited, however, to RNAs that
are labeled with 15N and that can be studied by NMR. The
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Figure 1. Folding constraints and restraints. Traditional chemical
agents that act on bases are applied as folding constraints, i.e., a
base accessible to chemical modification cannot be in a base pair
flanked by Watson-Crick pairs on each side. In RNAstructure, this
is implemented by assigning a large positive free energy to any con-
formation that violates the constraint. SHAPE reactivity is applied as
a folding restraint, i.e., a free energy change bonus or penalty for pair-
ing of a nucleotide. For nucleotides with low SHAPE reactivity, a
pairing stabilization is provided and for high reactivity, a pairing
penalty is provided. The SHAPE restraint is provided per nucleotide
in a base pair stack. Therefore, the free energy change is applied twice
per nucleotide buried in a helix and once per nucleotide in a pair at
the end of a helix (Deigan et al. 2009).
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latter limitation probably restricts the maximum length
of the RNA to somewhere between 100 and 300 nucle-
otides. Another disadvantage of NMR is that relatively
large amounts of RNA are required compared to chemical
methods.

2.2 Structure Comparison

RNAs whose biological function depends on their structure
(e.g., tRNA, rRNA, etc.) should show structural conserva-
tion when comparisons are made between RNAs of related
species (Woese and Pace 1993). Thus, another approach
for identifying correct base pairs and loops is their occur-
rence in the same or similar locations in homologous
(i.e., evolutionarily related) RNAs. The structure compa-
rison approach has the advantages that it gives the structure
in the cell, should work for sequences not governed
by thermodynamics, can identify pseudoknots, non-
Watson-Crick base pairs and elements of the tertiary
structure; it also leverages the exploding database of
sequences. Structure comparison may not be applicable
to all RNAs, however. To determine secondary structure
de novo from sequence analysis, multiple, homologous
sequences are required, as are high quality alignments of
the sequences. These requirements may be hard to meet
for rare RNAs or RNAs with high levels of variability.

The manual determination of a conserved structure
from a set of sequences is called comparative sequence
analysis and involves aligning available sequences to iden-
tify covariant sites: sites that show correlated mutations.
Synchronized mutation between sites is interpreted as the
manifestation of functional (structural) constraints on
the molecular evolution of the RNA. Double point muta-
tions in aligned sites that preserve base pairing (e.g., G-C
mutating to A-U, C-G, etc.) are the simplest covariations
to identify and interpret. Simply, to model base pairing
one searches an alignment of RNA sequences for “structur-
ally silent” mutations. Comparative sequence analysis is
phenomenally accurate at predicting a structure (.95%
of predicted pairs correct) when significant human effort
and skill are applied (Gutell et al. 2002).

2.3 Combined Methods for Determining Secondary
Structure: An Example from the 50 Regions of R2
Retrotransposon RNA

An illustrative example for determining RNA secondary
structure comes from the region that occurs toward the
50 terminus of silk moth R2 retroelements. This roughly
350 nucleotide structured region was discovered as
a persistent “contaminant” in preparations of the silk
moth, Bombyx mori, R2 encoded protein. This RNA is

strongly bound by R2 protein and this binding is an essen-
tial part of R2 element insertion into the host genome
(Christensen et al. 2006). An initial structural model was
proposed using free energy minimization with a single
sequence, constrained by chemical modification and oligo-
nucleotide binding data (Kierzek et al. 2008). Unusual
structural features of this model inspired further probing
of a 74 nucleotide fragment using NMR, which revealed a
pseudoknot structure for this fragment (Hart et al. 2008).

As additional R2 sequences became available, it was
possible to use comparative sequence analysis to interro-
gate the structure of this RNA (Kierzek et al. 2009). Each
of four additional R2 sequences was subjected to the
same battery of chemical reagents (i.e., DMS, CMCT, and
NMIA) and oligonucleotide binding experiments as
B. mori. These data were used in constrained free energy
minimization and combined with the B. mori NAPSS re-
sults to provide initial structural hypotheses for manual
alignment and comparative analysis. The reasonability of
the structural hypotheses was gauged with a partition
function calculation and annotation of the base pairing
probabilities. The alignment and secondary structures
were altered to maximize the conservation of structure
and the formation of compensatory base changes.

The results of this modeling are summarized in Figure 2.
There are five regions in this RNA that are structurally
conserved. These are organized into four hairpin loop
structures and a pseudoknot. One of the interesting fea-
tures revealed by structure alignment was that two of the
conserved hairpins, falling within the coding region of
this RNA, correspond to conserved protein coding regions.
Evidently, evolution acted on two levels: mutations that
preserved RNA base pairing could also be synonymous
substitutions with respect to amino acid coding. The sec-
ondary structures shown in Figure 2 are consistent with
chemical mapping and NMR results; they are well sup-
ported by consistent and compensatory mutations (single
and double point mutations that preserve base pairing).
Moreover, for each single sequence fold, these conserved
structures are composed of high probability base pairs as
determined from partition function calculations. This
wealth of data is summarized in Figure 2.

3 AUTOMATING COMPARATIVE SEQUENCE
ANALYSIS

The example of comparative analysis given above repre-
sents a significant investment in time and a certain degree
of artisanal craftsmanship. To date, no completely accurate
computational approach exists for automating compara-
tive analysis, but a number of distinct approaches have
been applied to the problem. Overall, these methods are
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helpful at generating hypotheses that can be tested with man-
ual comparison or experiments.

3.1 Three General Approaches to Predicting
Conserved Secondary Structures

It would be most efficient to deduce correctly secondary
structure from sequence alone, and programs are available
for attempting this when multiple sequences are available.
The problem of predicting the lowest free energy structure
common to multiple sequences has been approached from
three directions. The first approach is to simultaneously find
both the lowest free energy structure and the optimum align-
ment of sequences. The second approach is to start with the
sequences aligned by nucleotide identity and then find the
conserved pairs in the given alignment. The final approach
is to predict low free energy structures for each sequence
separately and then to sort through the predicted structures
to find the structures common to all sequences.

3.2 Approach 1: Fold and Align

The concept of using a dynamic programming algorithm
to simultaneously fold and align a set of sequences was
introduced by Sankoff (Sankoff 1985). This idea was
implemented in practical computer programs such as
Dynalign and Foldalign to find lowest free energy common
structures (Mathews and Turner 2002; Havgaard et al.
2005). To make calculations feasible for long sequences
(currently up to about 2000 nucleotides), other data are
used to restrict the possible structures or alignments. The
current approach in Dynalign, for example, is to rule out
base pairs that can only exist in structures with high folding
free energies (Uzilov et al. 2006) and to rule out alignments
that are extremely unlikely (,1023) based on statistical
analysis of aligned sequences (Harmanci et al. 2007).
Additional algorithms have been developed to use scoring

schemes based on producing structures similar to secon-
dary structures present in databases of known structures
(Holmes 2005; Dowell and Eddy 2006; Do et al. 2008).

To determine confidence estimates for predictions of
base pairs common to two sequences, a partition function
algorithm for common structures was developed, called
PARTS (Harmanci et al. 2008). This algorithm calculates
equilibrium constants for common structures with a pseu-
do free energy score derived from base pair probabilities de-
termined for each sequence and sequence alignment
probabilities. The shortcut of using base pairing probabil-
ities for scoring saves significant computation time and had
been previously proposed (Hofacker et al. 2004; Hofacker
and Stadler 2004) and used in the structure prediction pro-
grams LocARNA (Will et al. 2007) and Murlet (Kiryu et al.
2007). As with single sequences, base pairs that form with
greater probability in common structures are more likely
to be correctly predicted than those of low probability
(Harmanci et al. 2008). Additionally, the partition function
allows for stochastic sampling and clustering of structures
conserved between the two sequences (Harmanci et al.
2009). As expected, the additional information contained
in two sequences improves the fidelity of structure predic-
tion as evidenced by the fact that the individual clusters
contain structures that are much more similar to each other
than for single sequence structure sampling (Harmanci
et al. 2009).

Because of the computational cost, practical calcula-
tions are only performed with two sequences. To determine
a structure common to more than two sequences, methods
have been developed that use greedy heuristics to find the
common structure using multiple pairwise calculations
(Bellamy-Royds and Turcotte 2007; Kiryu et al. 2007;
Torarinsson et al. 2007; Will et al. 2007). The drawback to
this approach is that any calculations performed early in
the set that have poor prediction accuracy will make the
subsequent predictions poor as well.

Figure 2. Determination of Structured Regions of an RNA. A cartoon of the 50 region of the silk moth R2 retrotrans-
poson is shown. The conserved structure is organized into four hairpin loops (labeled I and III–V) and a pseudo-
knot (labeled II). Also shown are three conserved coding regions (A–C) and a putative open reading frame (ORF)
start site. The five conserved structures are detailed with data that went into the structural modeling. The sequences
shown are for B. mori whereas mutations are those that occur in four other moth species. Mutational data appear
next to the main sequence and is color annotated: dark blue are double mutations that maintain base pairing (com-
pensatory), light blue are single point mutations that maintain pairing (consistent), gray are mutations in loops, red
disrupt canonical base pairs (inconsistent), green are insertions (green X represents a deletion). Experimental map-
ping is color annotated on the backbone sequence: red are NMIA only modifications and orange are modifications
by both traditional mapping agents (DMS or CMCT) and NMIA. Base pairs are indicated with dashes between nu-
cleotides and are color annotated for probability from partition function calculation: Red, probability (P) �99%;
Orange, 99% . P � 95%; Yellow, 95% . P � 90%; Dark Green, 90% . P � 80%; Light Green, 80% . P � 70%;
Light Blue, 70% . P � 60%; Dark Blue, 60% . P � 50%; Black ,50%. Many base pairs in the pseudoknot have
low probability because the RNAstructure program does not allow pseudoknots and thus, under-counts them in the
partition function.
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3.3 Approach 2: Align then Fold

In the second approach, a multiple sequence alignment is
constructed based on sequence information alone and
then the lowest free energy structure is predicted that is
common to all or most sequences (Lück et al. 1996;
Hofacker et al. 2002; Bernhart et al. 2008). Calculations
are improved by also providing free energy change bonuses
for base pair formation at sites of covariation, where
structure is conserved, but sequence is not.

The advantage to this approach is speed. It can be ap-
plied to almost any number of sequences and takes roughly
the same calculation time as structure prediction for a
single sequence of the same length as the alignment length.
The drawback is that the quality of the structure prediction
depends on the quality of the alignment. Alignments based
on sequence alone may not properly reflect the structural
homology that relates the set of sequences, and it is possible
to miss compensating base pair changes that are key to eval-
uating the quality of the structure prediction. In a Catch 22,
without a structurally informed alignment, it is difficult to
develop a structural model to refine the alignment. The
program ConStruct, however, addresses this limitation by
providing a graphical user interface by which the user can
manually adjust the alignment to facilitate the testing of
structural models and iteratively refine the alignment and
structure (Lück et al. 1999).

3.4 Approach 3: Fold then Align

In the third approach, a set of low free energy secondary
structures is determined for each of multiple sequences
and then the predicted structures are analyzed to find the
lowest free energy structure common to all sequences
(Reeder and Giegerich 2005). The direct implementation
of this would be nearly computationally intractable be-
cause the number of low free energy structures for a given
sequence is enormous (Wuchty et al. 1999). It is also known
that the number of structures for a sequence with a folding
free energy change below a threshold increases exponen-
tially as the threshold is raised higher. Therefore, if
the structures were explicitly analyzed, then it would be
hard or impossible to sort through enough low free energy
structures to make this approach feasible.

Instead of directly using this approach on structures,
Giegerich and coworkers apply the algorithm on folding
topologies, called abstract shapes (Giegerich et al. 2004).
For example, one level of shape abstraction is to examine
just the branching topology of the structure, without
considering the internal or bulge loops. With increasing
threshold above the lowest free energy structure, the num-
ber of abstract shapes increases much more slowly than the
increase in number of structures (Voss et al. 2006).

The Fold then Align approach has the advantages of
being faster than Fold and Align and also not being subject
to the limited accuracy of sequence alignment as in Align
then Fold. It has the drawback that the common abstract
shape is found, which does not exactly predict which pairs
are homologous, although an estimate can be generated by
postprocessing (Höchsmann et al. 2004).

3.5 Available Programs

Table 2 shows a list of the available programs for predicting
conserved secondary structures. This table is restricted to
those programs that work using thermodynamics as a basis,
although these approaches have been explored using alter-
native scoring methods.

4 FINDING FUNCTIONAL RNA

Given the number of sequenced whole genomes and the
fact that much of these genomes are transcribed, there is
significant interest in finding genes for noncoding RNA
(ncRNA) sequences, i.e., genes that encode RNA sequences
that function without being translated to a protein. This
work fits into two categories, in which the first is the discov-
ery of RNA sequences of a specific, known type and the sec-
ond is the discovery of new types of RNA. Predictions of
thermodynamic stability play important roles in both types
of searches.

Because RNA structure is more highly conserved than
sequence, methods to scan for specific ncRNAs test for
the formation of a specific secondary structure. The earliest
successful methods required training to a specific type of

Table 2. Programs for the prediction of a conserved RNA secondary
structure. This table provides a list of programs that predict conserved
secondary structures using thermodynamics

Program: URL: Type:

ConStruct http://www.biophys.uni-duesseldorf.
de/local/ConStruct/ConStruct.html

Align then
Fold

Dynalign http://rna.urmc.rochester.edu/
dynalign.html

Fold and
Align

FOLDALIGN http://foldalign.ku.dk/ Fold and
Align

LocARNA http://www.bioinf.uni-freiburg.de/
Software/LocARNA/

Fold and
Align

Murlet http://murlet.ncrna.org/ Fold and
Align

PARTS http://rna.urmc.rochester.edu/parts.
html

Fold and
Align

RNAalifold http://rna.tbi.univie.ac.at/ Align then
Fold

RNAcast http://bibiserv.techfak.uni-bielefeld.
de/rnacast/

Fold then
Align

D.H. Mathews, W.N. Moss, and D.H. Turner
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RNA either by automated training to a sequence alignment
(Eddy and Durbin 1994) or by development of scores based
on specific knowledge (Fichant and Burks 1991; Lowe and
Eddy 1997; Lowe and Eddy 1999). A different program,
called RNAmotif, was developed to scan for a user-
specified secondary structure or class of structures, in
which the user provides a descriptor of the structure
(Macke et al. 2001). The drawback to this search method
is that it is prone to predicting false positives. For example,
a large number of potential cloverleaf structures encoded in
genome sequences are not tRNA sequences (Tsui et al.
2003). Fortunately, predicted folding free energy change
is an excellent criterion for separating the true positives
from false positives (Tsui et al. 2003). In other words, the
sequences with the potential to fold as cloverleafs, but are
not tRNA sequences, nearly always had less favorable fold-
ing free energy change compared to true tRNA sequences
folded as cloverleafs.

The problem of finding novel ncRNAs also can rely on
predicted folding free energy change. It was hypothesized
early that ncRNA sequences have lower folding free energy
changes than random sequences (Le et al. 1988; Chen et al.
1990). This hypothesis proved controversial and one reason
for the controversy is whether the correct controls for test-
ing this hypothesis are random sequences with the same
nucleotide content or dinucleotide content; this is because
the stacking nearest neighbor parameters depend on dinu-
cleotides (Seffens and Digby 1999; Workman and Krogh
1999). It is now generally accepted that there is a statistical
trend for ncRNAs to have lower folding free energy change
than matched control sequences with identical dinucle-
otide content (Clote et al. 2005; Uzilov et al. 2006). This
trend, however, is not large enough to find with high sen-
sitivity and specificity ncRNA sequences in genomes be-
cause of a large overlap in the distributions of folding
free energy changes for ncRNAs and controls (Rivas and
Eddy 2000; Uzilov et al. 2006).

The discovery of conserved ncRNA genes by scanning
genome alignments, however, is achievable by evaluating
thermodynamic stability. The programs that perform these
scans have, as their basis, algorithms that predict conserved
secondary structures using either “align then fold” or “fold
and align” approaches as described earlier. For example,
RNAz uses the align then fold algorithm RNAalifold to
identify stable RNA structures in multiple genome align-
ments (Washietl et al. 2005). The fold and align algorithm,
Dynalign, adjusts the original genome alignment to reflect
an alignment based on RNA structure and therefore is
capable of finding ncRNAs that have diverged farther in se-
quence than RNAz (Uzilov et al. 2006). The drawback is
that it is slower. Foldalign, another fold and align algo-
rithm, has also been used to find conserved, structured RNA

in genomes (Torarinsson et al. 2006). It has been applied to
compare genome sequences in regions that are not align-
able based on sequence alone and it found numerous
conserved putative ncRNA genes.

5 FUTURE DIRECTIONS

The progress in rapid determination of secondary structure
lays the foundation for accelerating determination of
three dimensional structure. There are NMR fingerprints
for various loop motifs (Varani et al. 1996; Moore 2001)
and there will likely also be chemical mapping fingerprints.
Models of three-dimensional (3D) structures can be tested
for consistency with chemical mapping and NMR data.
Computers are constantly becoming more powerful so
that it is possible to envision methods based on physics
(e.g., molecular mechanics) or homology or a combination
of the two for correctly predicting secondary and even 3D
structure (Westhof et al. 2010) quickly on the basis of
sequence alone. Physics based methods, however, will
require a more fundamental understanding of molecular
interactions determining thermodynamics and structure
(Yildirim and Turner 2005). Understanding the physics
of the molecular interactions should also lead to improved
predictions of RNA dynamics, which are likely to be
important for many functions.

A hindrance to homology modeling of RNA 3D
structure is that, in comparison to protein structures, the
collection of high resolution RNA 3D structures is relatively
impoverished. The list of high resolution RNA structures
has been growing steadily, however, and “information-
based” approaches to 3D structure determination show
promise. For example, the MC-Sym algorithm (Parisien
and Major 2008) decomposes elements of RNA 3D struc-
ture into graphical representations, called “cyclic motifs,”
which can facilitate homology modeling. Resulting 3D
models can be constrained by complementary data, such
as NMR and chemical mapping to weed out poor models.

The B. mori R2 RNA 50 region again provides an illus-
trative example of the process of moving from primary to
secondary to 3D structure. As indicated in Figure 2, energy
minimization guided by chemical mapping, oligonucleo-
tide binding, NMR and comparative analysis was able to
determine the base pairing of the R2 pseudoknot. Knowl-
edge of the correct base pairing is a strong restraint on pos-
sible 3D folding, and this was used to constrain MC-Sym
modeling of the R2 pseudoknot. The resulting 3D models
were further screened by searching for helix–helix stacking
that was consistent with NMR results: namely the NMR
signature that connected the minor hairpin and the longer
of the two pseudoknot helices (Hart et al. 2008). The final
3D model for this pseudoknot (Fig. 3) was selected based

Folding and Finding RNA Secondary Structure
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on consistency with chemical mapping data (mainly used
to rule out possible tertiary interactions) and similarity
to models of the four other silk moth pseudoknots.

The ability to rapidly model RNA structure may facili-
tate discovery of therapeutics that target RNA. Structure in
the target mRNA is an important consideration in design-
ing siRNAs (Lu and Mathews 2007; Shao et al. 2007;
Tafer et al. 2008) and determining microRNA targets
(Rehmsmeier et al. 2004; Long et al. 2007). Additionally,
the Disney group is using small-molecule microarray
methods to deduce the basis for matching potential drugs
with RNA motifs that bind them strongly (Childs-Disney
et al. 2007; Disney and Childs-Disney 2007). Microarray
methods based on short, chemically modified oligonucleo-
tides (Kierzek et al. 2008; Kierzek et al. 2009) are also pro-
viding insight into the rules that govern oligonucleotide
binding to structured RNAs, which should facilitate design
of nucleic acid based therapeutics.

6 APPLICATION TO THE STUDY OF EVOLUTION

Structural comparisons may allow discovery of new
fundamental principles of evolution and biology. For ex-
ample, studies of systems biology are revealing intricate reg-
ulatory networks in cells and providing hypotheses of their
evolution (Feschotte 2008). It is likely that RNA/RNA in-
teractions are important in at least some networks. In
turn, new biological principles discovered on the basis of
RNA/RNA interactions can then be applied to accelerating
discovery of new functional RNAs and of their structures.

The identification of microRNAs (miRNAs) and mi-
RNA targets is an excellent example of how methods for
folding and finding RNA have contributed to our knowl-
edge of biology. MicroRNAs are one type of RNA impor-
tant for regulatory networks. MicroRNAs are involved in
a number of important cellular processes, such as develop-
ment, apoptosis, and cell differentiation/proliferation
(Bartel 2004). As well, miRNAs may have roles in the pro-
gression of at least 70 human diseases (Lu et al. 2008), in-
cluding cancer and cardiovascular disease. Identification
of putative miRNAs can be accomplished using algorithms
based on RNA folding thermodynamics (Lim et al. 2003a;
Lim et al. 2003b). Additionally, thermodynamics lay at the
heart of many miRNA target prediction software (Kiriaki-
dou et al. 2004; Rehmsmeier et al. 2004; Krek et al. 2005).
Applications of such software have revealed complex miR-
NA networks where single miRNAs have multiple binding
sites in target mRNAs.

The evolutionary origins of miRNAs are still being
unraveled, but interesting results suggest at least some arise
from transposable elements. Fifty five miRNAs, representing
12% of experimentally characterized human miRNAs, ap-
parently originated from transposons (Piriyapongsa et al.
2007). Indeed, certain families of transposable elements
appear to be natural fodder for the evolution of miRNAs:
miniature inverted-repeat transposable elements (MITES)
possess complementary palindromic termini separated
by short linkers (Feschotte et al. 2002). When transcribed,
these MITES have the ability to fold into hairpins that are
structurally similar to precursor miRNA hairpins.
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Figure 3. Experiment and Sequence Comparison are Used to Model 3D Structure. Homology with known structures
was used to propose 3D folds for the B. mori R2 element pseudoknot from MC-Sym (Parisien and Major 2008)
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secondary structural model.
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In addition to being able to generate new miRNAs,
transposons may be responsible for evolving miRNA
networks (Feschotte 2008). In their replication in host
genomes, transposons may replicate miRNA genes, or
insert new miRNA target sites into host genes. This process
is evidenced by the finding that multiple genes may be
regulated by the same miRNA. RNA structural constraints
act on the evolution of miRNA biogenesis and targeting.
RNA thermodynamics are crucial to many miRNA target
site prediction programs (Berezikov et al. 2006; Kruger
and Rehmsmeier 2006) and have played an important
role in predicting and classifying families of miRNAs
(Kaczkowski et al. 2009) and miRNA regulatory networks
(Rehmsmeier et al. 2004).

Another key conserved regulatory pathway is RNA
mediated transcriptional gene silencing. In one mode of
action, small RNAs regulate DNA methylation, an impor-
tant epigenetic mechanism of gene control (Hawkins and
Morris 2008). This mode of action silences repetitive
“junk” elements: a process vital for maintaining genome
health. Again, tandem repeat sequences (associated with
repetitive elements) appear to be important for the pro-
duction of the small double-stranded RNAs needed to
stimulate DNA methylation (Chan et al. 2006).

6.1 RNA Structure and Phylogenetic Reconstruction

Prediction and analyses of structured RNAs play funda-
mentally important roles in elucidating the evolutionary
connections that link all organisms. It was the analysis of
ribosomal RNA sequences that led Woese to propose the
Archaea as a distinct major branch on the “Tree of Life”
(Woese et al. 1990).

In addition to resolving these deep phylogenetic rela-
tionships, structured RNAs are commonly used markers
for phylogenetic reconstruction at higher taxonomical lev-
els. Internally transcribed spacer (ITS) regions of riboso-
mal RNAs are popular targets for phylogenetic analysis
(Alvarez and Wendel 2003). These particular RNAs are
not under the strict functional constraints of ribosomal
RNA, and thus have enough variation to make them appro-
priate for higher level classifications. Though evolving
under less stringent evolutionary constraints, the ITS2
RNA shows a conserved core secondary structure common
throughout eukaryotes (Schultz et al. 2005). Presence of
secondary structure in phylogenetic markers has important
implications for phylogeny reconstruction. Sequence
alignments, the basis for phylogenetic comparison, that
do not account for structural homology may not reflect
true evolutionary relationships. Compensatory mutations
can confound phylogenetic analysis, as the nucleotides that
constitute the alignments are not independently evolving

characters, but are rather linked by higher order con-
straints, e.g., base pairing (Alvarez and Wendel 2003).

With the ability to generate good structural models for
these phylogenetic markers RNA structure can facilitate,
rather than confound, phylogeny reconstruction. Knowledge
of RNA secondary structure can improve alignment quality
(Goertzen et al. 2003). With accurate knowledge of paired
sites, patterns of compensatory mutations between aligned
species can be used to infer phylogeny (Wolf et al. 2005).
Phylogenetic reconstruction methods that rely on models
of sequence evolution, such as likelihood-based methods,
also benefit from structural knowledge: paired and loop
regions of structured RNAs are better accounted for using
evolutionary models that account for different mutational
rates for changes in paired or unpaired nucleotides (Telford
et al. 2005). To facilitate such studies, an ITS2 secondary
structure database (.100,000 entries) has been created using
structural models based on free energy minimization and
guided by comparative analysis (Selig et al. 2008).

Elements of RNA secondary structure themselves
can be treated as evolving characters and phylogenetic con-
nections may be traced by changes in structural character
states (Knudsen and Caetano-Anolles 2008). Deconstruct-
ing RNA secondary structure into evolving characters and
subjecting them to cladistic analysis allows for the study of
the origin of particular substructures, e.g., hairpin loops.
Such cladistic analysis of RNA secondary structure has
led to insights into the molecular evolution of the tRNA
cloverleaf structure (Sun and Caetano-Anolles 2008).
This method of using structure as a character has also
been applied to the classification of species using rRNA
(Caetano-Anolles 2002), ITS RNA (Tippery and Les
2008) and tRNA (Sun and Caetano-Anolles 2008) and to
investigate evolutionary trends in the structures of SINE
elements (Sun et al. 2007).

6.2 Investigating Evolution: The RNA Model

The prediction of RNA structure is useful for understand-
ing evolution from both in silico and in vitro studies. A
number of fundamental evolutionary concepts can be ex-
plored using RNA. In RNA, genotype may be considered
as the sequence of nucleotides, whereas the phenotype is
the structure that may be formed by that sequence. Genetic
variation may be simply modeled with mutations in the
sequence (e.g., mutations introduced in silico). Selection
may be introduced as a constraint on structure or thermo-
dynamic stability in computer modeling. The concept of
phenotypic plasticity applies to RNA: a single sequence
may have multiple accessible secondary structures; as
does the concept of neutrality: A single structure may be
accessible to a number of sequences (Fontana 2002).

Folding and Finding RNA Secondary Structure
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For computational modeling of evolutionary princi-
ples, RNA has a number of qualities that can be exploited
to draw generalized conclusions. The thermodynamic
model of RNA folding is physically grounded and results
in a straight forward mapping of genotype (sequence) to
phenotype (secondary structure). From a given sequence,
it is possible to explore the entire phenotypic space (the
set of accessible structures). Studies of genotype-pheno-
type mappings have revealed neutral networks connecting
phenotypes (common structures) with sequence space (se-
quences that have the given phenotype). Such neutral net-
works explain the evolvability of nucleic acids by linking
neutral drift and selection (Schuster and Stadler 2003).
Neutral drift, the accumulation of structurally silent muta-
tions, allows an evolving RNA to sample sequences with
different plastic repertoires (available phenotypes); this is
the basis of structural innovation. Such an evolutionary
path was simulated for evolving a tRNA structure: long
phases of phenotypic stasis were punctuated by structural
(evolutionary) innovations along the path to the optimal
tRNA structure (Schuster 2001). Neutral network theory
found practical application in the discovery of an in vitro
evolved RNA sequence at the intersection of two neutral
networks that simultaneously performed catalytic activities
of two different ribozymes (cleavage ribozyme and RNA li-
gase) (Schultes and Bartel 2000). Similarly, structure calcu-
lations were used to engineer a neutral path between two
aptamer variants, whose intermediates were capable of
binding to two substrates (FAD and GMP) (Held et al.
2003).

The availability of tools for folding and finding RNA
made possible the studies discussed earlier, and many
more. These tools will improve with advances in computer
science, our understanding of the forces that govern RNA
folding, and our understanding of fundamental biology.
If even a tiny fraction of the noncoding portions of eukary-
otic genomes represents functional RNA, then there is a co-
lossal task to identify and understand these molecules.
What other fascinating RNAs and complex RNA-based
networks remain to be discovered?

With new RNAs come new opportunities to study evo-
lution. Newly revealed RNAs may provide important
markers for refining the phylogenetic relations that map
the tree of life. We may also better understand the trajecto-
ries of and the evolutionary forces acting on structured
RNAs: a critical component to understanding the RNA
World.
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