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1.23 Lagrange Multipliers

The maxima and minima of a function f(x) of several variables x1, x2, . . . , xn
are among the points at which its gradient vanishes

rf(x) = 0. (1.221)

These are the stationary points of f .

Example 1.30 (Minimum). For instance, if f(x) = x21 + 2x22 + 3x23, then
its minimum is at

rf(x) = (2x1, 4x2, 6x3) = 0 (1.222)

that is, at x1 = x2 = x3 = 0.

But how do we find the extrema of f(x) if x must satisfy a constraint?
We use a Lagrange multiplier (Joseph-Louis Lagrange 1736–1813).
In the case of one constraint c(x) = 0, we no longer expect the gradient

rf(x) to vanish, but its projection must vanish in those directions dx that
preserve the constraint. So dx ·rf(x) = 0 for all dx that make the dot
product dx ·rc(x) vanish. This means that rf(x) and rc(x) must be
parallel. So the extrema of f(x) subject to the constraint c(x) = 0 satisfy
two equations

rf(x) = �rc(x) and c(x) = 0. (1.223)

These equations define the extrema of the unconstrained function

L(x,�) = f(x)� � c(x) (1.224)

of the n+ 1 variables x, . . . , xn,�

rL(x,�) = rf(x)� �rc(x) = 0 and
@L(x,�)

@�
= � c(x) = 0. (1.225)

The variable � is a Lagrange multiplier.
In the case of k constraints c1(x) = 0, . . . , ck(x) = 0, the projection of

rf must vanish in those directions dx that preserve all the constraints. So
dx ·rf(x) = 0 for all dx that make all dx ·rcj(x) = 0 for j = 1, . . . , k. The
gradient rf will satisfy this requirement if it’s a linear combination

rf = �1rc1 + · · ·+ �k rck (1.226)

of the k gradients because then dx ·rf will vanish if dx ·rcj = 0 for j =
1, . . . , k. The extrema also must satisfy the constraints

c1(x) = 0, . . . , ck(x) = 0. (1.227)
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Equations (1.226 & 1.227) define the extrema of the unconstrained function

L(x,�) = f(x)� �1 c1(x) + . . .�k ck(x) (1.228)

of the n+ k variables x and �

rL(x,�) = rf(x)� �rc1(x)� · · ·� �rck(x) = 0 (1.229)

and

@L(x,�)

@�j
= � cj(x) = 0 for j = 1, . . . , k. (1.230)

Example 1.31 (Constrained Extrema and Eigenvectors). Suppose we want
to find the extrema of a real, symmetric quadratic form f(x) = xTAx
subject to the constraint c(x) = x · x� 1 which says that the vector x is of
unit length. We form the function

L(x,�) = xTAx� � (x · x� 1) (1.231)

and since the matrix A is real and symmetric, we find its unconstrained
extrema as

rL(x,�) = 2Ax� 2�x = 0 and x · x = 1. (1.232)

The extrema of f(x) = xTAx subject to the constraint c(x) = x · x� 1 are
the normalized eigenvectors

Ax = �x and x · x = 1. (1.233)

of the real, symmetric matrix A.

1.24 Eigenvectors

If a linear operator A maps a nonzero vector |ui into a multiple of itself

A|ui = �|ui (1.234)

then the vector |ui is an eigenvector of A with eigenvalue �. (The German
adjective eigen means special or proper.)

If the vectors {|ki} for k = 1, . . . , N form a basis for the vector space
in which A acts, then we can write the identity operator for the space as


