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1.23 Lagrange Multipliers

The maxima and minima of a function f(x) of several variables x, xa, ..., 2,
are among the points at which its gradient vanishes

Vf(z)=0. (1.221)
These are the stationary points of f.

Example 1.30 (Minimum). For instance, if f(z) = 23 + 223 + 323, then
its minimum is at

Vf(x) = (2x1,4x2,623) =0 (1.222)
that is, at 1 = 29 = 23 = 0. ]

But how do we find the extrema of f(x) if z must satisfy a constraint?
We use a Lagrange multiplier (Joseph-Louis Lagrange 1736-1813).

In the case of one constraint ¢(x) = 0, we no longer expect the gradient
V f(z) to vanish, but its projection must vanish in those directions dx that
preserve the constraint. So dx -V f(x) =0 for all dr that make the dot
product dz - Ve(z) vanish. This means that Vf(z) and Ve(z) must be
parallel. So the extrema of f(z) subject to the constraint c¢(z) = 0 satisfy
two equations

Vf(x) =AVe(zr) and c(x)=0. (1.223)

These equations define the extrema of the unconstrained function

L(z,\) = f(z) — Ae(x) (1.224)
of the n + 1 variables x, ..., x,, A
VL(z,\) = Vf(z)—AVe(z) =0 and W = —c(z) =0. (1.225)

The variable A is a Lagrange multiplier.

In the case of k constraints cj(x) = 0, ..., cx(x) = 0, the projection of
V f must vanish in those directions dx that preserve all the constraints. So
dz -V f(xz) = 0 for all dz that make all dz - V¢j(z) =0for j =1,...,k. The
gradient V f will satisfy this requirement if it’s a linear combination

Vf=MVecr 4+ -4+ A Vg (1.226)

of the k gradients because then dz - V f will vanish if dz - Ve; = 0 for j =
1,...,k. The extrema also must satisfy the constraints

c1(x) =0,...,cx(x) =0. (1.227)
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Equations (1.226 & 1.227) define the extrema of the unconstrained function

L(z,\) = f(x) — Mci(z) + ... Mg eg(z) (1.228)

of the n + k variables x and A\

VL(x,\) =Vf(x)—AVei(z) — - —AVer(x) =0 (1.229)
and
0 A
La(i;): — (@) =0 for j=1,... .k (1.230)

Example 1.31 (Constrained Extrema and Eigenvectors). Suppose we want
to find the extrema of a real, symmetric quadratic form f(z) = zTAzx
subject to the constraint ¢(z) = x - — 1 which says that the vector z is of
unit length. We form the function

Lz, ) =2TAz — A(z-z—1) (1.231)

and since the matrix A is real and symmetric, we find its unconstrained
extrema as

VL(x,\) =24z -2 z=0 and z-z=1. (1.232)

The extrema of f(z) = 2T Az subject to the constraint c(z) = -z — 1 are
the normalized eigenvectors

Az=Xz and z-z=1. (1.233)

of the real, symmetric matrix A. O

1.24 Eigenvectors

If a linear operator A maps a nonzero vector |u) into a multiple of itself
Alu) = A|u) (1.234)

then the vector |u) is an eigenvector of A with eigenvalue A. (The German
adjective eigen means special or proper.)

If the vectors {|k)} for k = 1, ..., N form a basis for the vector space
in which A acts, then we can write the identity operator for the space as



