1.23 Lagrange Multipliers

The maxima and minima of a function $f(x)$ of several variables $x_{1}, x_{2}, \ldots, x_{n}$ are among the points at which its gradient vanishes

$$
\begin{equation*}
\nabla f(x)=0 . \tag{1.221}
\end{equation*}
$$

These are the stationary points of f.
Example 1.30 (Minimum). For instance, if $f(x)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}$, then its minimum is at

$$
\begin{equation*}
\nabla f(x)=\left(2 x_{1}, 4 x_{2}, 6 x_{3}\right)=0 \tag{1.222}
\end{equation*}
$$

that is, at $x_{1}=x_{2}=x_{3}=0$.
But how do we find the extrema of $f(x)$ if x must satisfy a constraint? We use a Lagrange multiplier (Joseph-Louis Lagrange 1736-1813).

In the case of one constraint $c(x)=0$, we no longer expect the gradient $\nabla f(x)$ to vanish, but its projection must vanish in those directions $d x$ that preserve the constraint. So $d x \cdot \nabla f(x)=0$ for all $d x$ that make the dot product $d x \cdot \nabla c(x)$ vanish. This means that $\nabla f(x)$ and $\nabla c(x)$ must be parallel. So the extrema of $f(x)$ subject to the constraint $c(x)=0$ satisfy two equations

$$
\begin{equation*}
\nabla f(x)=\lambda \nabla c(x) \quad \text { and } \quad c(x)=0 \tag{1.223}
\end{equation*}
$$

These equations define the extrema of the unconstrained function

$$
\begin{equation*}
L(x, \lambda)=f(x)-\lambda c(x) \tag{1.224}
\end{equation*}
$$

of the $n+1$ variables $x, \ldots, x_{n}, \lambda$

$$
\begin{equation*}
\nabla L(x, \lambda)=\nabla f(x)-\lambda \nabla c(x)=0 \quad \text { and } \quad \frac{\partial L(x, \lambda)}{\partial \lambda}=-c(x)=0 \tag{1.225}
\end{equation*}
$$

The variable λ is a Lagrange multiplier.
In the case of k constraints $c_{1}(x)=0, \ldots, c_{k}(x)=0$, the projection of ∇f must vanish in those directions $d x$ that preserve all the constraints. So $d x \cdot \nabla f(x)=0$ for all $d x$ that make all $d x \cdot \nabla c_{j}(x)=0$ for $j=1, \ldots, k$. The gradient ∇f will satisfy this requirement if it's a linear combination

$$
\begin{equation*}
\nabla f=\lambda_{1} \nabla c_{1}+\cdots+\lambda_{k} \nabla c_{k} \tag{1.226}
\end{equation*}
$$

of the k gradients because then $d x \cdot \nabla f$ will vanish if $d x \cdot \nabla c_{j}=0$ for $j=$ $1, \ldots, k$. The extrema also must satisfy the constraints

$$
\begin{equation*}
c_{1}(x)=0, \ldots, c_{k}(x)=0 . \tag{1.227}
\end{equation*}
$$

Equations (1.226 \& 1.227) define the extrema of the unconstrained function

$$
\begin{equation*}
L(x, \lambda)=f(x)-\lambda_{1} c_{1}(x)+\ldots \lambda_{k} c_{k}(x) \tag{1.228}
\end{equation*}
$$

of the $n+k$ variables x and λ

$$
\begin{equation*}
\nabla L(x, \lambda)=\nabla f(x)-\lambda \nabla c_{1}(x)-\cdots-\lambda \nabla c_{k}(x)=0 \tag{1.229}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L(x, \lambda)}{\partial \lambda_{j}}=-c_{j}(x)=0 \quad \text { for } j=1, \ldots, k \tag{1.230}
\end{equation*}
$$

Example 1.31 (Constrained Extrema and Eigenvectors). Suppose we want to find the extrema of a real, symmetric quadratic form $f(x)=x^{\top} A x$ subject to the constraint $c(x)=x \cdot x-1$ which says that the vector x is of unit length. We form the function

$$
\begin{equation*}
L(x, \lambda)=x^{\top} A x-\lambda(x \cdot x-1) \tag{1.231}
\end{equation*}
$$

and since the matrix A is real and symmetric, we find its unconstrained extrema as

$$
\begin{equation*}
\nabla L(x, \lambda)=2 A x-2 \lambda x=0 \quad \text { and } \quad x \cdot x=1 . \tag{1.232}
\end{equation*}
$$

The extrema of $f(x)=x^{\top} A x$ subject to the constraint $c(x)=x \cdot x-1$ are the normalized eigenvectors

$$
\begin{equation*}
A x=\lambda x \quad \text { and } \quad x \cdot x=1 . \tag{1.233}
\end{equation*}
$$

of the real, symmetric matrix A.

1.24 Eigenvectors

If a linear operator A maps a nonzero vector $|u\rangle$ into a multiple of itself

$$
\begin{equation*}
A|u\rangle=\lambda|u\rangle \tag{1.234}
\end{equation*}
$$

then the vector $|u\rangle$ is an eigenvector of A with eigenvalue λ. (The German adjective eigen means special or proper.)

If the vectors $\{|k\rangle\}$ for $k=1, \ldots, N$ form a basis for the vector space in which A acts, then we can write the identity operator for the space as

