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Probability and Statistics

13.1 Probability and Thomas Bayes

The probability P (A) of an outcome in a set A is the sum of the probabilities
Pj of all the di↵erent (mutually exclusive) outcomes j in A

P (A) =
X
j2A

Pj . (13.1)

For instance, if one throws two fair dice, then the probability that the sum
is 2 is P (1, 1) = 1/36, while the probability that the sum is 3 is P (1, 2) +
P (2, 1) = 1/18.
If A and B are two sets of possible outcomes, then the probability of an

outcome in the union A[B is the sum of the probabilities P (A) and P (B)
minus that of their intersection A \B

P (A [B) = P (A) + P (B)� P (A \B). (13.2)

If the outcomes are mutually exclusive, then P (A\B) = 0, and the probabil-
ity of the union is the sum P (A[B) = P (A)+P (B). The joint probability
P (A,B) ⌘ P (A\B) is the probability of an outcome that is in both sets A
and B. If the joint probability is the product P (A,B) = P (A)P (B), then
the outcomes in sets A and B are statistically independent.
The probability that a result in set B also is in set A is the conditional

probability P (A|B), the probability of A given B

P (A|B) =
P (A \B)

P (B)
. (13.3)

Also P (B|A) = P (A \ B)/P (A). The substitution B ! B \ C in (13.3)
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gives P (A|B,C) = P (A\B \C)/P (B \C). If we multiply (13.3) by P (B),
we get

P (A,B) = P (A \B) = P (B|A)P (A) = P (A|B)P (B). (13.4)

Combination of (13.3 & 13.4) gives Bayes’s theorem (Riley et al., 2006,
p. 1132)

P (A|B) =
P (B|A)P (A)

P (B)
(13.5)

(Thomas Bayes, 1702–1761).
If the set B of outcomes or events is contained in the union of N mutually

exclusive sets Aj of outcomes, then we must sum over them

P (B) =
NX
j=1

P (B|Aj)P (Aj). (13.6)

The probabilities P (Aj) are called a priori probabilities. In this case,
Bayes’s theorem is (Roe, 2001, p. 119)

P (Ak|B) =
P (B|Ak)P (Ak)PN
j=1 P (B|Aj)P (Aj)

. (13.7)

If there are several B’s, then a third form of Bayes’s theorem is

P (Ak|B`) =
P (B`|Ak)P (Ak)PN
j=1 P (B`|Aj)P (Aj)

. (13.8)

Example 13.1 (The Low-Base-Rate Problem) Suppose the incidence of a
rare disease in a population is P (D) = 0.001. Suppose a test for the disease
has a sensitivity of 99%, that is, the probability that a carrier will test
positive is P (+|D) = 0.99. Suppose the test also is highly selective with
a false-positive rate of only P (+|N) = 0.005. Then the probability that a
random person in the population would test positive is by (13.6)

P (+) = P (+|D)P (D) + P (+|N)P (N) = 0.005993. (13.9)

And by Bayes’s theorem (13.5), the probability that a person who tests
positive actually has the disease is only

P (D|+) =
P (+|D)P (D)

P (+)
=

0.99⇥ 0.001

0.005993
= 0.165 (13.10)

and the probability that a person testing positive actually is healthy is
P (N |+) = 1� P (D|+) = 0.835.
Even with an excellent test, screening for rare diseases is problematic.
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Similarly, screening for rare behaviors, such as drug use in the CIA or dis-
loyalty in the army, is di�cult with a good test and absurd with a poor one
like a polygraph.

Example 13.2 (The Three-Door Problem) A prize lies behind one of three
closed doors. A contestant gets to pick which door to open, but before the
chosen door is opened, a door that does not lead to the prize and was not
picked by the contestant swings open. Should the contestant switch and
choose a di↵erent door?

We note that a contestant who picks the wrong door and switches always
wins, so P (W |Sw,WD) = 1, while one who picks the right door and switches
never does P (W |Sw,RD) = 0. Since the probability of picking the wrong
door is P (WD) = 2/3, the probability of winning if one switches is

P (W |Sw) = P (W |Sw,WD)P (WD) + P (W |Sw,RD)P (RD) = 2/3.
(13.11)

The probability picking the right door is P (RD) = 1/3, and the probability
of winning if one picks the right door and stays put is P (W |Sp,RD) = 1.
So the probability of winning if one stays put is

P (W |Sp) = P (W |Sp,RD)P (RD) + P (W |Sp,WD)P (WD) = 1/3.
(13.12)

Thus, one should switch after the door opens.

If the set A is the interval (x � dx/2, x + dx/2) of the real line, then
P (A) = P (x) dx, and the second version (13.7) of Bayes’s theorem says

P (x|B) =
P (B|x)P (x)R1

�1 P (B|x0)P (x0) dx0
. (13.13)

Example 13.3 (A Tiny Poll) We ask 4 people if they will vote for Nancy
Pelosi, and 3 say yes. If the probability that a random voter will vote for
her is y, then the probability that 3 in our sample of 4 will is

P (3|y) = 4 y3 (1� y). (13.14)

We don’t know the prior probability distribution P (y), so we set it equal
to unity on the interval (0, 1). Then the continuous form of Bayes’s theorem
(13.13) and our cheap poll give the probability distribution of the fraction
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y who will vote for her as

P (y|3) = P (3|y)P (y)R 1
0 P (3|y0)P (y0) dy0

=
P (3|y)R 1

0 P (3|y0) dy0

=
4 y3 (1� y)R 1

0 4 y03 (1� y0) dy0
= 20 y3 (1� y). (13.15)

Our best guess then for the probability that she will win the election isZ 1

1/2
P (y|3) dy =

Z 1

1/2
20 y3 (1� y) dy =

13

16
(13.16)

which is slightly higher that the naive estimate of 3/4.

13.2 Mean and Variance

In roulette and many other games, N outcomes xj can occur with probabil-
ities Pj that sum to unity

NX
j=1

Pj = 1. (13.17)

The expected value E[x] of the outcome x is its mean µ or average value
hxi = x

E[x] = µ = hxi = x =
NX
j=1

xj Pj . (13.18)

The expected value E[x] also is called the expectation of x or expec-
tation value of x.
The `th moment is

E[x`] = µ` = hx`i =
NX
j=1

x`jPj (13.19)

and the `th central moment is

E[(x� µ)`] = ⌫` =
NX
j=1

(xj � µ)`Pj (13.20)

where always µ0 = ⌫0 = 1 and ⌫1 = 0 (exercise 13.2).
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The variance V [x] is the second central moment ⌫2

V [x] ⌘ E[(x� hxi)2] = ⌫2 =
NX
j=1

(xj � hxi)2 Pj (13.21)

which one may write as (exercise 13.4)

V [x] = hx2i � hxi2 (13.22)

and the standard deviation � is its square-root

� =
p
V [x]. (13.23)

If the values of x are distributed continuously according to a probability
distribution or density P (x) normalized to unityZ

P (x) dx = 1 (13.24)

then the mean value is

E[x] = µ = hxi =
Z

xP (x) dx (13.25)

and the `th moment is

E[x`] = µ` = hx`i =
Z

x` P (x) dx. (13.26)

The `th central moment is

E[(x� µ)`] = ⌫` =

Z
(x� µ)` P (x) dx. (13.27)

The variance of the distribution is the second central moment

V [x] = ⌫2 =

Z
(x� hxi)2 P (x) dx = µ2 � µ2 (13.28)

and the standard deviation � is its square-root � =
p

V [x].
Many authors use f(x) for the probability distribution P (x) and F (x) for

the cumulative probability Pr(�1, x) of an outcome in the interval (�1, x)

F (x) ⌘ Pr(�1, x) =

Z x

�1
P (x0) dx0 =

Z x

�1
f(x0) dx0 (13.29)

a function that is necessarily monotonic

F 0(x) = Pr0(�1, x) = f(x) = P (x) � 0. (13.30)

Some mathematicians reserve the term probability distribution for prob-
abilities like Pr(�1, x) and Pj and call a continuous distribution P (x) a
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probability density function. But usage of the Maxwell-Boltzmann dis-
tribution is too widespread in physics for me to observe this distinction.

Although a probability distribution P (x) is normalized (13.24), it can
have fat tails, which are important in financial applications (Bouchaud
and Potters, 2003). Fat tails can make the variance and even the mean
absolute deviation

Eabs ⌘
Z

|x� µ|P (x) dx (13.31)

diverge.

Example 13.4 (Heisenberg’s Uncertainty Principle) In quantum mechan-
ics, the absolute-value squared | (x)|2 of a wave function  (x) is the prob-
ability distribution P (x) = | (x)|2 of the position x of the particle, and
P (x) dx is the probability that the particle is found between x � dx/2 and
x+dx/2. The variance h(x�hxi)2i of the position operator x is written as the
square (�x)2 of the standard deviation � = �x which is the uncertainty
in the position of the particle. Similarly, the square of the uncertainty in
the momentum (�p)2 is the variance h(p� hpi)2i of the momentum.
For the wave function (3.70)

 (x) =

✓
2

⇡

◆1/4 1p
a
e�(x/a)2 . (13.32)

these uncertainties are �x = a/2 and �p = ~/a. They provide a saturated
example �x�p = ~/2 of Heisenberg’s uncertainty principle

�x�p � ~
2
. (13.33)

If x and y are two random variables that occur with a joint distribution
P (x, y), then the expected value of the linear combination axnym + bxpyq is

E[axnym + bxpyq] =

Z
(axnym + bxpyq)P (x, y) dxdy

= a

Z
xnym P (x, y) dxdy + b

Z
xpyq P (x, y) dxdy

= aE[xnym] + bE[xpyq]. (13.34)

This result and its analog for discrete probability distributions show that
expected values are linear.
The correlation coe�cient or covariance of two variables x and y that
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occur with a joint distribution P (x, y) is

C[x, y] ⌘
Z
P (x, y)(x� x)(y � y) dxdy = h(x� x)(y � y)i = hx yi � hxihyi.

(13.35)
The variables x and y are said to be independent if

P (x, y) = P (x)P (y). (13.36)

Independence implies that the covariance vanishes, but C[x, y] = 0 does not
guarantee that x and y are independent (Roe, 2001, p. 9).
The variance of x+ y

h(x+ y)2i� hx+ yi2 = hx2i� hxi2+ hy2i� hyi2+2 (hx yi � hxihyi) (13.37)

is the sum

V [x+ y] = V [x] + V [y] + 2C[x, y]. (13.38)

It follows (exercise 13.6) that for any constants a and b the variance of ax+by
is

V [ax+ by] = a2 V [x] + b2 V [y] + 2 abC[x, y]. (13.39)

More generally (exercise 13.7), the variance of the sum a1x1 + a2x2 + · · ·+
aNxN is

V [a1x1 + · · ·+ aNxN ] =
NX
j=1

a2j V [xj ] +
NX

j,k=1,j<k

2ajak C[xj , xk]. (13.40)

If the variables xj and xk are independent for j 6= k, then their covariances
vanish C[xj , xk] = 0, and the variance of the sum a1x1 + · · ·+ aNxN is

V [a1x1 + · · ·+ aNxN ] =
NX
j=1

a2j V [xj ]. (13.41)

13.3 The Binomial Distribution

If the probability of success is p on each try, then we expect that in N tries
the mean number of successes will be

hni = N p. (13.42)

The probability of failure on each try is q = 1 � p. So the probability of
a particular sequence of successes and failures, such as n successes followed
by N � n failures is pn qN�n. There are N !/n! (N � n)! di↵erent sequences
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Figure 13.1 If the probability of success on any try is p, then the probability
PB(n, p,N) of n successes in N tries is given by equation (13.43). For
p = 0.2, this binomial probability distribution PB(n, p,N) is plotted against
n for N = 125 (solid), 250 (dashes), 500 (dot dash), and 1000 tries (dots).

of n successes and N �n failures, all with the same probability pn qN�n. So
the probability of n successes (and N � n failures) in N tries is

PB(n, p,N) =
N !

n! (N � n)!
pn qN�n =

✓
N

n

◆
pn (1� p)N�n. (13.43)

This binomial distribution also is called Bernoulli’s distribution (Ja-
cob Bernoulli, 1654–1705).
The sum of the probabilities PB(n, p,N) for all possible values of n is

unity
NX

n=0

PB(n, p,N) = (p+ 1� p)N = 1. (13.44)

In fig. 13.1, the probabilities PB(n, p,N) for 0  n  250 and p = 0.2 are
plotted for N = 125, 250, 500, and 1000 tries.
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The mean number of successes

µ = hniB =
NX

n=0

nPB(n, p,N) =
NX

n=0

n

✓
N

n

◆
pnqN�n (13.45)

is a partial derivative with respect to p with q held fixed

hniB = p
@

@p

NX
n=0

✓
N

n

◆
pnqN�n

= p
@

@p
(p+ q)N = Np (p+ q)N�1 = Np (13.46)

which verifies the estimate (13.42).
One may show (exercise 13.9) that the variance (13.21) of the binomial

distribution is

VB = h(n� hni)2i = p (1� p)N. (13.47)

Its standard deviation (13.23) is

�B =
p

VB =
p
p (1� p)N. (13.48)

The ratio of the width to the mean

�B
hniB

=

p
p (1� p)N

Np
=

r
1� p

Np
(13.49)

decreases with N as 1/
p
N .

Example 13.5 (Avogadro’s number) A mole of gas is Avogadro’s number
NA = 6⇥ 1023 of molecules. If the gas is in a cubical box, then the chance
that each molecule will be in the left half of the cube is p = 1/2. The mean
number of molecules there is hniB = pNA = 3⇥1023, and the uncertainty in
n is �B =

p
p (1� p)N =

p
3⇥ 1023/4 = 3 ⇥ 1011. So the numbers of gas

molecules in the two halves of the box are equal to within �B/hniB = 10�12

or to 1 part in 1012.

Because N ! increases very rapidly with N , the rule

PB(n+ 1, p,N) =
p

1� p

N � n

n+ 1
PB(n, p,N) (13.50)

is helpful when N is big. But when N exceeds a few hundred, the formula
(13.43) for PB(n, p,N) becomes unmanageable even in quadruple precision.
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One way of computing PB(n, p,N) for large N is to use Srinivasa Ramanu-
jan’s correction (4.39) to Stirling’s formula N ! ⇡

p
2⇡N(N/e)N

N ! ⇡
p
2⇡N

✓
N

e

◆N ✓
1 +

1

2N
+

1

8N2

◆1/6

. (13.51)

When N and N�n, but not n, are big, one may use (13.51) for N ! and (N�
n)! in the formula (13.43) for PB(n, p,N) and so may show (exercise 13.11)
that

PB(n, p,N) ⇡ (pN)n

n!
qN�nR2(n,N) (13.52)

in which

R2(n,N) =
⇣
1� n

N

⌘n�1/2
✓
1 +

1

2N
+

1

8N2

◆1/6

⇥

1 +

1

2(N � n)
+

1

8(N � n)2

��1/6

(13.53)

tends to unity as N ! 1 for any fixed n.
When all three factorials in PB(n, p,N) are huge, one may use Ramanu-

jan’s approximation (13.51) to show (exercise 13.12) that

PB(n, p,N) ⇡
s

N

2⇡n(N � n)

✓
pN

n

◆n ✓ qN

N � n

◆N�n

R3(n,N) (13.54)

where

R3(n,N) =

✓
1 +

1

2n
+

1

8n2

◆�1/6 ✓
1 +

1

2N
+

1

8N2

◆1/6

⇥

1 +

1

2(N � n)
+

1

8(N � n)2

��1/6

(13.55)

tends to unity as N ! 1, N � n ! 1, and n ! 1.
Another way of coping with the unwieldy factorials in the binomial for-

mula PB(n, p,N) is to use limiting forms of (13.43) due to Poisson and to
Gauss.

13.4 The Poisson Distribution

Poisson took the two limits N ! 1 and p = hni/N ! 0. So we let N
and N � n, but not n, tend to infinity, and use (13.52) for the binomial
distribution (13.43). Since R2(n,N) ! 1 as N ! 1, we get

PB(n, p,N) ⇡ (pN)n

n!
qN�n =

hnin
n!

qN�n. (13.56)
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Now q = 1� p = 1� hni/N , and so for any fixed n we have

lim
N!1

qN�n = lim
N!1

✓
1� hni

N

◆N ✓
1� hni

N

◆�n

= e�hni. (13.57)

Thus as N ! 1 with pN fixed at hni, the binomial distribution becomes
the Poisson distribution

PP (n, hni) =
hnin
n!

e�hni. (13.58)

(Siméon-Denis Poisson, 1781–1840. Incidentally, poisson means fish and
sounds like pwahsahn.)
The Poisson distribution is normalized to unity

1X
n=0

PP (n, hni) =
1X
n=0

hnin
n!

e�hni = ehni e�hni = 1. (13.59)

Its mean µ is the parameter hni = pN of the binomial distribution

µ =
1X
n=0

nPP (n, hni) =
1X
n=1

n
hnin
n!

e�hni = hni
1X
n=1

hni(n�1)

(n� 1)!
e�hni

= hni
1X
n=0

hnin
n!

e�hni = hni. (13.60)

As N ! 1 and p ! 0 with pN = hni fixed, the variance (13.47) of the
binomial distribution tends to the limit

VP = lim
N!1
p!0

VB = lim
N!1
p!0

p (1� p)N = hni. (13.61)

Thus the mean and the variance of a Poisson distribution are equal

VP = h(n� hni)2i = hni = µ (13.62)

as one may show directly (exercise 13.13).

Example 13.6 (Coherent States) The coherent state |↵i introduced in
equation (2.138)

|↵i = e�|↵|2/2e↵a
† |0i = e�|↵|2/2

1X
n=0

↵n

p
n!
|ni (13.63)

is an eigenstate a|↵i = ↵|↵i of the annihilation operator a with eigenvalue
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↵. The probability P (n) of finding n quanta in the state |↵i is the square
of the absolute value of the inner product hn|↵i

P (n) = |hn|↵i|2 = |↵|2n
n!

e�|↵|2 (13.64)

which is a Poisson distribution P (n) = PP (n, |↵|2) with mean and variance
µ = hni = V (↵) = |↵|2.

13.5 The Gaussian Distribution

Gauss considered the binomial distribution in the limit N ! 1 with the
probability p fixed. In this limit, the binomial probability

PB(n, p,N) =
N !

n! (N � n)!
pn qN�n (13.65)

is very tiny unless n is near pN which means that n ⇡ pN and N � n ⇡
(1 � p)N = qN are comparable. So the limit N ! 1 e↵ectively is one in
which n and N � n also tend to infinity. The approximation (13.54)

PB(n, p,N) ⇡
s

N

2⇡n(N � n)

✓
pN

n

◆n ✓ qN

N � n

◆N�n

R3(n,N) (13.66)

applies in which R3(n,N) ! 1 as N , N�n, and n all increase without limit.
Because the probability PB(n, p,N) is negligible unless n ⇡ pN , we set

y = n � pN and treat y/n as small. Since n = pN + y and N � n =
(1� p)N + pN � n = qN � y, we may write the square-root ass

N

2⇡ n (N � n)
=

1p
2⇡N [(pN + y)/N ] [(qN � y)/N ]

=
1p

2⇡ pqN (1 + y/pN) (1� y/qN)
. (13.67)

Since y remains finite as N ! 1, we get in this limit

lim
N!1

s
N

2⇡ n (N � n)
=

1p
2⇡ pqN

. (13.68)
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Substituting pN + y for n and qN � y for N � n in (13.66), we find

PB(n, p,N) ⇡ 1p
2⇡ pqN

✓
pN

pN + y

◆pN+y ✓ qN

qN � y

◆qN�y

=
1p

2⇡ pqN

✓
1 +

y

pN

◆�(pN+y) ✓
1� y

qN

◆�(qN�y)

.(13.69)

which implies

ln
h
PB(n, p,N)

p
2⇡ pqN

i
⇡ �(pN+y) ln


1 +

y

pN

�
�(qN�y) ln


1� y

qN

�
.

(13.70)
The first two terms of the power series (4.88) for ln(1 + ✏) are

ln(1 + ✏) ⇡ ✏� 1

2
✏2. (13.71)

So using this expansion for ln(1 + y/pN) and also for ln(1� y/qN), we get

ln
⇣
PB(n, p,N)

p
2⇡ pqN

⌘
⇡ �(pN + y)

"
y

pN
� 1

2

✓
y

pN

◆2
#

(13.72)

� (qN � y)

"
� y

qN
� 1

2

✓
y

qN

◆2
#
⇡ � y2

2pqN
.

Gauss’s approximation to the binomial probability distribution thus is

PBG(n, p,N) =
1p

2⇡pqN
exp

✓
�(n� pN)2

2pqN

◆
(13.73)

in which we’ve replaced y by n� pN and 1� p by q.
Extending the integer n to a continuous variable x, we have

PG(x, p,N) =
1p

2⇡pqN
exp

✓
�(x� pN)2

2pqN

◆
(13.74)

which is (exercise 13.14) a normalized probability distribution with mean
hxi = µ = pN and variance h(x�µ)2i = �2 = pqN . Replacing pN by µ and
pqN by �2, we get the standard form of Gauss’s distribution

PG(x, µ,�) =
1

�
p
2⇡

exp

✓
�(x� µ)2

2�2

◆
. (13.75)

This distribution occurs so often in mathematics and in Nature that it is
often called the normal distribution. Its odd central moments all vanish
⌫2n+1 = 0, and its even ones are ⌫2n = (2n� 1)!!�2n (exercise 13.16).
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Actin Fibers in HELA Cells

Figure 13.2 Conventional (left, fuzzy) and dSTORM (right, sharp) images
of actin fibers in HELA cells. The actin is labeled with Alexa Fluor 647
Phalloidin. The white rectangles are 5 microns in length. Images courtesy
of Fang Huang and Keith Lidke.

Example 13.7 (Single-Molecule Super-Resolution Microscopy) If the wave-
length of visible light were a nanometer, microscopes would yield much
sharper images. Each photon from a (single-molecule) fluorophore enter-
ing the lens of a microscope would follow ray optics and be focused within
a tiny circle of about a nanometer on a detector. Instead, a photon arrives
not at x = (x1, x2) but at yi

= (y1i, y2i) with gaussian probability

P (y
i

) =
1

2⇡�2
e�(yi�x)2/2�2

(13.76)

where � ⇡ 150 nm is about a quarter of a wavelength. What to do?
In the centroid method, one collects N ⇡ 500 points y

i

and finds the
point x that maximizes the joint probability of the N image points

P =
NY
i=1

P (y
i

) = dN
NY
i=1

e�(yi�x)2/(2�2) = dN exp

"
�

NX
i=1

(y
i

� x)2/(2�2)

#
(13.77)

where d = 1/2⇡�2 by solving for k = 1 and 2 the equations

@P

@xk
= 0 = P

@

@xk

"
�

NX
i=1

(y
i

� x)2/(2�2)

#
=

P

�2

NX
i=1

(yik � xk) . (13.78)

This maximum-likelihood estimate of the image point x is the average of
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the observed points y
i

x =
1

N

NX
i=1

y
i

. (13.79)

This method is an improvement, but it is biased by auto-fluorescence and
out-of-focus fluorophores. Fang Huang and Keith Lidke use direct stochas-
tic optical reconstruction microscopy (dSTORM) to locate the image
point x of the fluorophore in ways that account for the finite accuracy of
their pixilated detector and the randomness of photo-detection.
Actin filaments are double helices of the protein actin some 5–9 nm wide.

They occur throughout a eukaryotic cell but are concentrated near its surface
and determine its shape. Together with tubulin and intermediate filaments,
they form a cell’s cytoskeleton. Figure 13.2 shows conventional (left, fuzzy)
and dSTORM (right, sharp) images of actin filaments. The finite size of the
fluorophore and the motion of the molecules of living cells limit dSTORM’s
improvement in resolution to a factor of 10 to 20.

13.6 The Error Function ERF

The probability that a random variable x distributed according to Gauss’s
distribution (13.75) has a value between µ� � and µ+ � is

P (|x� µ| < �) =

Z µ+�

µ��
PG(x, µ,�) dx =

1

�
p
2⇡

Z µ+�

µ��
exp

✓
� (x� µ)2

2�2

◆
dx

=
1

�
p
2⇡

Z �

��
exp

✓
� x2

2�2

◆
dx =

2p
⇡

Z �/�
p
2

0
e�t2 dt. (13.80)

The last integral is the error function

erf (x) =
2p
⇡

Z x

0
e�t2dt (13.81)

so in terms of it the probability that x lies within � of the mean µ is

P (|x� µ| < �) = erf

✓
�

�
p
2

◆
. (13.82)

In particular, the probabilities that x falls within one, two, or three standard
deviations of µ are

P (|x� µ| < �) = erf (1/
p
2) = 0.6827

P (|x� µ| < 2�) = erf (2/
p
2) = 0.9545

P (|x� µ| < 3�) = erf (3/
p
2) = 0.9973. (13.83)
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Figure 13.3 The error function erf (x) is plotted for 0 < x < 2.5. The
vertical lines are at x = �/(�

p
2) for � = �, 2�, and 3� with � = 1/

p
2.

The error function erf (x) is plotted in Fig. 13.3 in which the vertical lines
are at x = �/(�

p
2) for � = �, 2�, and 3�.

The probability that x falls between a and b is (exercise 13.17)

P (a < x < b) =
1

2


erf

✓
b� µ

�
p
2

◆
� erf

✓
a� µ

�
p
2

◆�
. (13.84)

In particular, the cumulative probability P (�1, x) that the random variable
is less than x is for µ = 0 and � = 1

P (�1, x) =
1

2


erf

✓
xp
2

◆
� erf

✓
�1p

2

◆�
=

1

2


erf

✓
xp
2

◆
+ 1

�
. (13.85)

The complement erfc of the error function is defined as

erfc (x) =
2p
⇡

Z 1

x
e�t2dt = 1� erf (x) (13.86)

and is numerically useful for large x where round-o↵ errors may occur in
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subtracting erf(x) from unity. Both erf and erfc are intrinsic functions in
fortran available without any e↵ort on the part of the programmer.

Example 13.8 (Summing Binomial Probabilities) To add up several bi-
nomial probabilities when the factorials in PB(n, p,N) are too big to handle,
we first use Gauss’s approximation (13.73)

PB(n, p,N) =
N !

n! (N � n)!
pn qN�n ⇡ 1p

2⇡pqN
exp

✓
�(n� pN)2

2pqN

◆
.

(13.87)
Then using (13.84) with µ = pN , we find (exercise 13.15)

PB(n, p,N) ⇡ 1

2

"
erf

 
n+ 1

2 � pNp
2pqN

!
� erf

 
n� 1

2 � pNp
2pqN

!#
(13.88)

which we can sum over the integer n to get

n2X
n=n1

PB(n, p,N) ⇡ 1

2

"
erf

 
n2 +

1
2 � pNp
2pqN

!
� erf

 
n1 � 1

2 � pNp
2pqN

!#
(13.89)

which is easy to evaluate.

Example 13.9 (Polls) Suppose in a poll of 1000 likely voters, 600 have said
they would vote for Nancy Pelosi. Repeating the analysis of example 13.3,
we see that if the probability that a random voter will vote for her is y, then
the probability that 600 in our sample of 1000 will is by (13.87)

P (600|y) = PB(600, y) =

✓
1000

600

◆
y600 (1� y)400

⇡ 1

10
p
20⇡y(1� y)

exp

✓
� 20(3� 5y)2

y(1� y)

◆
(13.90)

and so the probability density that a fraction y of the voters will vote for
her is

P (y|600) = P (600|y)R 1
0 P (600, y0) dy0

=
[y(1� y)]�1/2 exp

⇣
� 20(3�5y)2

y(1�y)

⌘
R 1
0 [y

0(1� y0)]�1/2 exp
⇣
� 20(3�5y0)2

y0(1�y0)

⌘
dy0

. (13.91)

This normalized probability distribution is negligible except for y near 3/5
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(exercise 13.18), where it is approximately Gauss’s distribution

P (y|600) ⇡ 1

�
p
2⇡

exp

✓
�(y � 3/5)2

2�2

◆
(13.92)

with mean µ = 3/5 and variance

�2 =
3

12500
= 2.4⇥ 10�4. (13.93)

The probability that y > 1/2 then is by (13.84)

P (12 < y < 1) =
1

2


erf

✓
1� µ

�
p
2

◆
� erf

✓
1/2� µ

�
p
2

◆�
=

1

2


erf

✓
20p
1.2

◆
� erf

✓
�5p
1.2

◆�
⇡ 1. (13.94)

The probability that y < 1/2 is 5.4⇥ 10�11.

13.7 The Maxwell-Boltzmann distribution

It is a small jump from Gauss’s distribution (13.75) to the Maxwell-Boltzmann
distribution of velocities of molecules in a gas. We start in one dimension
and focus on a single molecule that is being hit fore and aft with equal
probabilities by other molecules. If each hit increases or decreases its speed
by dv, then after n aft hits and N � n fore hits, the speed vx of a molecule
initially at rest would be

vx = ndv � (N � n)dv = (2n�N)dv. (13.95)

The probability of this speed is given by Gauss’s approximation (13.73) to
the binomial distribution PB(n,

1
2 , N) as

PBG(n,
1
2 , N) =

r
2

⇡N
exp

✓
�(2n�N)2

2N

◆
=

r
2

⇡N
exp

✓
� v2x
2Ndv2

◆
.

(13.96)
This argument applies to any physical variable subject to unbiased random

fluctuations. It is why Gauss’s distribution describes statistical errors and
why it occurs so often in Nature as to be called the normal distribution.

We now write the argument of the exponential in terms of the temperature
T and Boltzmann’s constant k by setting N = kT/(mdv2) so that

�
1
2v

2
x

Ndv2
= �

1
2mv2x

mNdv2
= �

1
2mv2x
kT

. (13.97)
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Then with dvx = 2dv, we have

PG(vx)dvx =

r
2m

⇡kT
dv exp

 
�

1
2mv2x
kT

!
=

r
m

2⇡kT
dvx exp

 
�

1
2mv2x
kT

!
.

(13.98)
Gauss’s distribution is normalized to unity because it is the limit of the

binomial distribution (13.44)Z 1

�1

r
m

2⇡kT
exp

 
�

1
2mv2x
kT

!
dvx = 1 (13.99)

as you may verify by explicit integration.
In three space dimensions, the Maxwell-Boltzmann distribution PMB(v)

is the product

PMB(v)d
3v = PG(vx)PG(vy)PG(vz)d

3v =
⇣ m

2⇡kT

⌘3/2
e�

1
2mv

2/(kT )4⇡v2dv.

(13.100)
The mean value of the velocity of a Maxwell-Boltzmann gas vanishes

hvi =
Z

v PMB(v)d
3v = 0 (13.101)

but the mean value of the square of the velocity v2 = v · v is the sum of the
three variances �2x = �2y = �2z = kT/m

hv2i = V [v2] =

Z
v2 PMB(v) d

3v = 3kT/m (13.102)

which is the familiar statement

1

2
mhv2i = 3

2
kT (13.103)

that each degree of freedom gets kT/2 of energy.

13.8 Di↵usion

We may apply the same reasoning as in the preceding section (13.7) to the
di↵usion of a gas of particles treated as a random walk with step size dx. In
one dimension, after n steps forward and N � n steps backward, a particle
starting at x = 0 is at x = (2n�N)dx. Thus as in (13.96), the probability
of being at x is given by Gauss’s approximation (13.73) to the binomial
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distribution PB(n,
1
2 , N) as

PBG(n,
1
2 , N) =

r
2

⇡N
exp

✓
�(2n�N)2

2N

◆
=

r
2

⇡N
exp

✓
� x2

2Ndx2

◆
.

(13.104)
In terms of the di↵usion constant

D =
Ndx2

2t
(13.105)

this distribution is

PG(x) =

✓
1

4⇡Dt

◆1/2

exp

✓
� x2

4Dt

◆
(13.106)

when normalized to unity on (�1,1).
In three dimensions, this gaussian distribution is the product

P (r, t) = PG(x)PG(y)PG(z) =

✓
1

4⇡Dt

◆3/2

exp

✓
� r2

4Dt

◆
. (13.107)

The variance �2 = 2Dt gives the average of the squared displacement of
each of the three coordinates. Thus the mean of the squared displacement
hr2i rises linearly with the time as

hr2i = V [r] = 3�2 =

Z
r2 P (r, t) d3r = 6D t. (13.108)

The distribution P (r, t) satisfies the di↵usion equation

Ṗ (r, t) = Dr2P (r, t) (13.109)

in which the dot means time derivative.

13.9 Langevin’s Theory of Brownian Motion

Einstein made the first theory of brownian motion in 1905, but Langevin’s
approach (Langevin, 1908) is simpler. A tiny particle of colloidal size and
mass m in a fluid is bu↵eted by a force F (t) due to the 1021 collisions per
second it su↵ers with the molecules of the surrounding fluid. Its equation of
motion is

m
dv(t)

dt
= F (t). (13.110)
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Langevin suggested that the force F (t) is the sum of a viscous drag �v(t)/B
and a rapidly fluctuating part f(t)

F (t) = � v(t)/B + f(t) (13.111)

so that

m
dv(t)

dt
= � v(t)

B
+ f(t). (13.112)

The parameter B is called the mobility. The ensemble average (the
average over the set of particles) of the fluctuating force f(t) is zero

hf(t)i = 0. (13.113)

Thus the ensemble average of the velocity satisfies

m
dhvi
dt

= � hvi
B

(13.114)

whose solution with ⌧ = mB is

hv(t)i = hv(0)i e�t/⌧ . (13.115)

The instantaneous equation (13.112) divided by the mass m is

dv(t)

dt
= � v(t)

⌧
+ a(t) (13.116)

in which a(t) = f(t)/m is the acceleration. The ensemble average of the
scalar product of the position vector r with this equation is⌧

r · dv
dt

�
= � hr · vi

⌧
+ hr · ai. (13.117)

But since the ensemble average hr · ai of the scalar product of the position
vector r with the random, fluctuating part a of the acceleration vanishes,
we have ⌧

r · dv
dt

�
= � hr · vi

⌧
. (13.118)

Now

1

2

d r2

dt
=

1

2

d

dt
(r · r) = r · v (13.119)

and so

1

2

d2r2

dt2
= r · dv

dt
+ v2. (13.120)
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The ensemble average of this equation gives us

d2hr2i
dt2

= 2

⌧
r · dv

dt

�
+ 2hv2i (13.121)

or in view of (13.118)

d2hr2i
dt2

= �2
hr · vi
⌧

+ 2hv2i. (13.122)

We now use (13.119) to replace hr · vi with half the first time derivative of
hr2i so that we have

d2hr2i
dt2

= �1

⌧

dhr2i
dt

+ 2hv2i. (13.123)

If the fluid is in equilibrium, then the ensemble average of v2 is given by the
Maxwell-Boltzmann value (13.103)

hv2i = 3kT

m
(13.124)

and so the acceleration (13.123) is

d2hr2i
dt2

+
1

⌧

dhr2i
dt

=
6kT

m
. (13.125)

which we can integrate.
The general solution (6.13) to a second-order linear inhomogeneous dif-

ferential equation is the sum of any particular solution to the inhomo-
geneous equation plus the general solution of the homogeneous equation.
The function hr2(t)ipi = 6kT t⌧/m is a particular solution of the inhomo-
geneous equation. The general solution to the homogeneous equation is
hr2(t)igh = U +W exp(�t/⌧) where U and W are constants. So hr2(t)i is

hr2(t)i = U +W e�t/⌧ + 6kT ⌧ t/m (13.126)

where U and W make hr2(t)i fit the boundary conditions. If the individual
particles start out at the origin r = 0, then one boundary condition is

hr2(0)i = 0 (13.127)

which implies that

U +W = 0. (13.128)

And since the particles start out at r = 0 with an isotropic distribution of
initial velocities, the formula (13.119) for ṙ2 implies that at t = 0

d hr2i
dt

����
t=0

= 2hr(0) · v(0)i = 0. (13.129)
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This boundary condition means that our solution (13.126) must satisfy

d hr2(t)i
dt

����
t=0

= � W

⌧
+

6kT ⌧

m
= 0. (13.130)

Thus W = �U = 6kT ⌧2/m, and so our solution (13.126) is

hr2(t)i = 6kT ⌧2

m


t

⌧
+ e�t/⌧ � 1

�
. (13.131)

At times short compared to ⌧ , the first two terms in the power series for
the exponential exp(�t/⌧) cancel the terms �1 + t/⌧ , leaving

hr2(t)i = 6kT ⌧2

m


t2

2⌧2

�
=

3kT

m
t2 = hv2i t2. (13.132)

But at times long compared to ⌧ , the exponential vanishes, leaving

hr2(t)i = 6kT ⌧

m
t = 6B kT t. (13.133)

The di↵usion constant D is defined by

hr2(t)i = 6D t (13.134)

and so we arrive at Einstein’s relation

D = B kT (13.135)

which often is written in terms of the viscous-friction coe�cient ⇣

⇣ ⌘ 1

B
=

m

⌧
(13.136)

as

⇣D = kT. (13.137)

This equation expresses Boltzmann’s constant k in terms of three quantities
⇣, D, and T that were accessible to measurement in the first decade of
the 20th century. It enabled scientists to measure Boltzmann’s constant k
for the first time. And since Avogadro’s number NA was the known gas
constant R divided by k, the number of molecules in a mole was revealed
to be NA = 6.022⇥ 1023. Chemists could then divide the mass of a mole of
any pure substance by 6.022⇥ 1023 and find the mass of the molecules that
composed it. Suddenly the masses of the molecules of chemistry became
known, and molecules were recognized as real particles and not tricks for
balancing chemical equations.
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13.10 The Einstein-Nernst relation

If a particle of mass m carries an electric charge q and is exposed to an
electric field E, then in addition to viscosity � v/B and random bu↵eting
f , the constant force qE acts on it

m
dv

dt
= � v

B
+ qE + f . (13.138)

The mean value of its velocity will then satisfy the di↵erential equation⌧
dv

dt

�
= �hvi

⌧
+

qE

m
(13.139)

where ⌧ = mB. A particular solution of this inhomogeneous equation is

hv(t)ipi =
q⌧E

m
= qBE. (13.140)

The general solution of its homogeneous version is hv(t)igh = A exp(�t/⌧)
in which the constant A is chosen to give hv(0)i at t = 0. So by (6.13), the
general solution hv(t)i to equation (13.139) is (exercise 13.19) the sum of
hv(t)ipi and hv(t)igh

hv(t)i = qBE + [hv(0)i � qBE] e�t/⌧ . (13.141)

By applying the tricks of the previous section (13.9), one may show (ex-
ercise 13.20) that the variance of the position r about its mean hr(t)i is

D
(r � hr(t)i)2

E
=

6kT ⌧2

m

✓
t

⌧
� 1 + e�t/⌧

◆
(13.142)

where hr(t)i = (q⌧2E/m)
�
t/⌧ � 1 + e�t/⌧

�
if hr(0)i = hv(0)i = 0. So for

times t � ⌧ , this variance isD
(r � hr(t)i)2

E
=

6kT ⌧ t

m
. (13.143)

Since the di↵usion constant D is defined by (13.134) asD
(r � hr(t)i)2

E
= 6D t (13.144)

we arrive at the Einstein-Nernst relation

D = BkT =
qB

q
kT =

µ

q
kT (13.145)

in which the electric mobility is µ = qB.
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13.11 Fluctuation and Dissipation

Let’s look again at Langevin’s equation (13.116) but with u as the indepen-
dent variable

dv(u)

du
+

v(u)

⌧
= a(u). (13.146)

If we multiply both sides by the exponential exp(u/⌧)✓
dv

du
+

v

⌧

◆
eu/⌧ =

d

du

⇣
v eu/⌧

⌘
= a(u) eu/⌧ (13.147)

and integrate from 0 to tZ t

0

d

du

⇣
v eu/⌧

⌘
du = v(t) et/⌧ � v(0) =

Z t

0
a(u) eu/⌧ du (13.148)

then we get

v(t) = e�t/⌧ v(0) + e�t/⌧
Z t

0
a(u) eu/⌧ du. (13.149)

Thus the ensemble average of the square of the velocity is

hv2(t)i = e�2t/⌧ hv2(0)i+ 2e�2t/⌧
Z t

0
hv(0) · a(u)i eu/⌧ du (13.150)

+e�2t/⌧
Z t

0

Z t

0
ha(u1) · a(u2)i e(u1+u2)/⌧ du1du2.

The second term on the RHS is zero, so we have

hv2(t)i = e�2t/⌧ hv2(0)i+ e�2t/⌧
Z t

0

Z t

0
ha(u1) · a(u2)i e(u1+u2)/⌧ du1du2.

(13.151)
The ensemble average

C(u1, u2) = ha(u1) · a(u2)i (13.152)

is an example of an autocorrelation function.
All autocorrelation functions have some simple properties, which are easy

to prove (Pathria, 1972, p. 458):

1. If the system is independent of time, then its autocorrelation function for
any given variable A(t) depends only upon the time delay s:

C(t, t+ s) = hA(t) ·A(t+ s)i ⌘ C(s). (13.153)

2. The autocorrelation function for s = 0 is necessarily non-negative

C(t, t) = hA(t) ·A(t)i = hA(t)2i � 0. (13.154)
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If the system is time independent, then C(t, t) = C(0) � 0.
3. The absolute value of C(t1, t2) is never greater than the average of C(t1, t1)

and C(t2, t2) because

h|A(t1)±A(t2)|2i = hA(t1)
2i+ hA(t2)

2i±2hA(t1) ·A(t2)i � 0 (13.155)

which implies that

�C(t1, t2) 
1

2
(C(t1, t1) + C(t2, t2)) � C(t1, t2) (13.156)

or

|C(t1, t2)| 
1

2
(C(t1, t1) + C(t2, t2)) . (13.157)

For a time-independent system, this inequality is |C(s)|  C(0) for every
time delay s.

4. If the variables A(t1) and A(t2) commute, then their autocorrelation
function is symmetric

C(t1, t2) = hA(t1) ·A(t2)i = hA(t2) ·A(t1)i = C(t2, t1). (13.158)

For a time-independent system, this symmetry is C(s) = C(�s).
5. If the variable A(t) is randomly fluctuating with zero mean, then we

expect both that its ensemble average vanishes

hA(t)i = 0 (13.159)

and that there is some characteristic time scale T beyond which the
correlation function falls to zero:

hA(t1) ·A(t2)i ! hA(t1)i · hA(t2)i = 0 (13.160)

when |t1 � t2| � T .

In terms of the autocorrelation function C(u1, u2) = ha(u1) ·a(u2)i of the
acceleration, the variance of the velocity (13.151) is

hv2(t)i = e�2t/⌧ hv2(0)i+ e�2t/⌧
Z t

0

Z t

0
C(u1, u2) e

(u1+u2)/⌧ du1du2.

(13.161)
Since C(u1, u2) is big only for tiny values of |u2 � u1|, it makes sense to
change variables to

s = u2 � u1 and w =
1

2
(u1 + u2). (13.162)

The element of area then is by (12.6–12.14)

du1 ^ du2 = dw ^ ds (13.163)
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and the limits of integration are �2w  s  2w for 0  w  t/2 and
�2(t� w)  s  2(t� w) for t/2  w  t. So hv2(t)i is

hv2(t)i = e�2t/⌧ hv2(0)i+ e�2t/⌧
Z t/2

0
e2w/⌧dw

Z 2w

�2w
C(s) ds

+ e�2t/⌧
Z t

t/2
e2w/⌧dw

Z 2(t�w)

�2(t�w)
C(s) ds. (13.164)

Since by (13.160) the autocorrelation function C(s) vanishes outside a nar-
row window of width 2T , we may approximate each of the s-integrals by

C =

Z 1

�1
C(s) ds. (13.165)

It follows then that

hv2(t)i = e�2t/⌧ hv2(0)i+ C e�2t/⌧
Z t

0
e2w/⌧dw

= e�2t/⌧ hv2(0)i+ C e�2t/⌧ ⌧

2

⇣
e2t/⌧ � 1

⌘
= e�2t/⌧ hv2(0)i+ C

⌧

2

⇣
1� e�2t/⌧

⌘
. (13.166)

As t ! 1, hv2(t)i must approach its equilibrium value of 3kT/m, and so

lim
t!1

hv2(t)i = C
⌧

2
=

3kT

m
(13.167)

which implies that

C =
6kT

m⌧
or

1

B
=

m2C

6kT
. (13.168)

Our final formula for hv2(t)i then is

hv2(t)i = e�2t/⌧ hv2(0)i+ 3kT

m

⇣
1� e�2t/⌧

⌘
. (13.169)

Referring back to the definition (13.136) of the viscous-friction coe�cient
⇣ = 1/B, we see that ⇣ is related to the integral

⇣ =
1

B
=

m2

6kT
C =

m2

6kT

Z 1

�1
ha(0) · a(s)ids = 1

6kT

Z 1

�1
hf(0) · f(s)ids

(13.170)
of the autocorrelation function of the random acceleration a(t) or equiva-
lently of the random force f(t). This equation relates the dissipation of vis-
cous friction to the random fluctuations. It is an example of a fluctuation-
dissipation theorem.
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If we substitute our formula (13.169) for hv2(t)i into the expression (13.123)
for the acceleration of hr2i, then we get

d2hr2(t)i
dt2

= �1

⌧

dhr2(t)i
dt

+ 2e�2t/⌧ hv2(0)i+ 6kT

m

⇣
1� e�2t/⌧

⌘
. (13.171)

The solution with both hr2(0)i = 0 and dhr2(0)i/dt = 0 is (exercise 13.21)

hr2(t)i = hv2(0)i ⌧2
⇣
1� e�t/⌧

⌘2
� 3kT

m
⌧2
⇣
1� e�t/⌧

⌘⇣
3� e�t/⌧

⌘
+
6kT ⌧

m
t.

(13.172)

13.12 Characteristic and Moment-Generating Functions

The Fourier transform (3.9) of a probability distribution P (x) is its char-
acteristic function P̃ (k) sometimes written as �(k)

P̃ (k) ⌘ �(k) ⌘ E[eikx] =

Z
eikx P (x) dx. (13.173)

The probability distribution P (x) is the inverse Fourier transform (3.9)

P (x) =

Z
e�ikx P̃ (k)

dk

2⇡
. (13.174)

Example 13.10 (Gauss) The characteristic function of the gaussian

PG(x, µ,�) =
1

�
p
2⇡

exp

✓
�(x� µ)2

2�2

◆
(13.175)

is by (3.18)

P̃G(k, µ,�) =
1

�
p
2⇡

Z
exp

✓
ikx� (x� µ)2

2�2

◆
dx (13.176)

=
eikµ

�
p
2⇡

Z
exp

✓
ikx� x2

2�2

◆
dx = exp

✓
iµk � 1

2
�2k2

◆
.

For a discrete probability distribution Pn the characteristic function is

�(k) ⌘ E[eikx] =
X
n

eikxn Pn. (13.177)

The normalization of both continuous and discrete probability distributions
implies that their characteristic functions satisfy P̃ (0) = �(0) = 1.
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Example 13.11 (Poisson) The Poisson distribution (13.58)

PP (n, hni) =
hnin
n!

e�hni (13.178)

has the characteristic function

�(k) =
1X
n=0

eikn
hnin
n!

e�hni = e�hni
1X
n=0

(hnieik)n
n!

= exp
h
hni
⇣
eik � 1

⌘i
.

(13.179)

The moment-generating function is the characteristic function evalu-
ated at an imaginary argument

M(k) ⌘ E[ekx] = P̃ (�ik) = �(�ik). (13.180)

For a continuous probability distribution P (x), it is

M(k) = E[ekx] =

Z
ekx P (x) dx (13.181)

and for a discrete probability distribution Pn, it is

M(k) = E[ekx] =
X
n

ekxn Pn. (13.182)

In both cases, the normalization of the probability distribution implies that
M(0) = 1.
Derivatives of the moment-generating function and of the characteristic

function give the moments

E[xn] = µn =
dnM(k)

dkn

����
k=0

= (�i)n
dnP̃ (k)

dkn

�����
k=0

. (13.183)

Example 13.12 (Gauss and Poisson) The moment-generating functions
for the distributions of Gauss (13.175) and Poisson (13.178) are

MG(k, µ,�) = exp

✓
µk +

1

2
�2k2

◆
and MP (k, hni) = exp

h
hni
⇣
ek � 1

⌘i
.

(13.184)
They give as the first three moments of these distributions

µG0 = 1, µG1 = µ, µG2 = µ2 + �2 (13.185)

µP0 = 1, µP1 = hni, µP2 = hni+ hni2 (13.186)

(exercise 13.22).
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Since the characteristic and moment-generating functions have derivatives
(13.183) proportional to the moments µn, their Taylor series are

P̃ (k) = E[eikx] =
1X
n=0

(ik)n

n!
E[xn] =

1X
n=0

(ik)n

n!
µn (13.187)

and

M(k) = E[ekx] =
1X
n=0

kn

n!
E[xn] =

1X
n=0

kn

n!
µn. (13.188)

The cumulants cn of a probability distribution are the derivatives of the
logarithm of its moment-generating function

cn =
dn lnM(k)

dkn

����
k=0

= (�i)n
dn ln P̃ (k)

dkn

�����
k=0

. (13.189)

One may show (exercise 13.24) that the first five cumulants of an arbitrary
probability distribution are

c0 = 0, c1 = µ, c2 = �2, c3 = ⌫3, and c4 = ⌫4 � 3�4 (13.190)

where the ⌫’s are its central moments (13.27). The 3d and 4th normalized
cumulants are the skewness ⇣ = c3/�3 = ⌫3/�3 and the kurtosis  =
c4/�4 = ⌫4/�4 � 3.

Example 13.13 (Gaussian Cumulants) The logarithm of the moment-
generating function (13.184) of Gauss’s distribution is µk + �2k2/2. Thus
by (13.189), PG(x, µ,�) has no skewness or kurtosis, its cumulants vanish
cGn = 0 for n > 2, and its fourth central moment is ⌫4 = 3�4.

13.13 Fat Tails

The gaussian probability distribution PG(x, µ,�) falls o↵ for |x � µ| � �
very fast—as exp

�
� (x� µ)2/2�2

�
. Many other probability distributions

fall o↵ more slowly; they have fat tails. Rare “black-swan” events—wild
fluctuations, market bubbles, and crashes—lurk in their fat tails.
Gosset’s distribution, which is known as Student’s t-distribution

with ⌫ degrees of freedom

PS(x, ⌫, a) =
1p
⇡

�((1 + ⌫)/2)

�(⌫/2)

a⌫

(a2 + x2)(1+⌫)/2
(13.191)
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has power-law tails. Its even moments are

µ2n = (2n� 1)!!
�(⌫/2� n)

�(⌫/2)

✓
a2

2

◆n

(13.192)

for 2n < ⌫ and infinite otherwise. For ⌫ = 1, it coincides with the Breit-
Wigner or Cauchy distribution

PS(x, 1, a) =
1

⇡

a

a2 + x2
(13.193)

in which x = E � E0 and a = �/2 is the half-width at half-maximum.
Two representative cumulative probabilities are (Bouchaud and Potters,

2003, p.15–16)

Pr(x,1) =

Z 1

x
PS(x

0, 3, 1) dx0 =
1

2
� 1

⇡


arctanx+

x

1 + x2

�
(13.194)

Pr(x,1) =

Z 1

x
PS(x

0, 4,
p
2) dx0 =

1

2
� 3

4
u+

1

4
u3 (13.195)

where u = x/
p
2 + x2 and a is picked so �2 = 1. William Gosset (1876–

1937), who worked for Guinness, wrote as Student because Guinness didn’t
let its employees publish.
The log-normal probability distribution on (0,1)

Pln(x) =
1

�x
p
2⇡

exp


� ln2(x/x0)

2�2

�
(13.196)

describes distributions of rates of return (Bouchaud and Potters, 2003, p. 9).
Its moments are (exercise 13.27)

µn = xn0 e
n2�2/2. (13.197)

The exponential distribution on [0,1)

Pe(x) = ↵e�↵x (13.198)

has (exercise 13.28) mean µ = 1/↵ and variance �2 = 1/↵2. The sum of
n independent exponentially and identically distributed random variables
x = x1 + · · ·+ xn is distributed on [0,1) as (Feller, 1966, p.10)

Pn,e(x) = ↵
(↵x)n�1

(n� 1)!
e�↵x. (13.199)

The sum of the squares x2 = x21+ · · ·+x2n of n independent normally and
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identically distributed random variables of zero mean and variance �2 gives
rise to Pearson’s chi-squared distribution on (0,1)

Pn,P (x,�)dx =

p
2

�

1

�(n/2)

✓
x

�
p
2

◆n�1

e�x2/(2�2)dx (13.200)

which for x = v, n = 3, and �2 = kT/m is (exercise 13.29) the Maxwell-
Boltzmann distribution (13.100). In terms of � = x/�, it is

Pn,P (�
2/2) d�2 =

1

�(n/2)

✓
�2

2

◆n/2�1

e��2/2d
�
�2/2

�
. (13.201)

It has mean and variance

µ = n and �2 = 2n (13.202)

and is used in the chi-squared test (Pearson, 1900).
Personal income, the amplitudes of catastrophes, the price changes of fi-

nancial assets, and many other phenomena occur on both small and large
scales. Lévy distributions describe such multi-scale phenomena. The char-
acteristic function for a symmetric Lévy distribution is for ⌫  2

L̃⌫(k, a⌫) = exp (� a⌫ |k|⌫) . (13.203)

Its inverse Fourier transform (13.174) is for ⌫ = 1 (exercise 13.30) the
Cauchy or Lorentz distribution

L1(x, a1) =
a1

⇡(x2 + a21)
(13.204)

and for ⌫ = 2 the gaussian

L2(x, a2) = PG(x, 0,
p
2a2) =

1

2
p
⇡a2

exp

✓
� x2

4a2

◆
(13.205)

but for other values of ⌫ no simple expression for L⌫(x, a⌫) is available. For
0 < ⌫ < 2 and as x ! ±1, it falls o↵ as |x|�(1+⌫), and for ⌫ > 2 it
assumes negative values, ceasing to be a probability distribution (Bouchaud
and Potters, 2003, pp. 10–13).

13.14 The Central Limit Theorem and Jarl Lindeberg

We have seen in sections (13.7 & 13.8) that unbiased fluctuations tend to
distribute the position and velocity of molecules according to Gauss’s distri-
bution (13.75). Gaussian distributions occur very frequently. The central
limit theorem suggests why they occur so often.
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Let x1, . . . , xN be N independent random variables described by proba-
bility distributions P1(x1), . . . , PN (xN ) with finite means µj and finite vari-
ances �2j . The Pj ’s may be all di↵erent. The central limit theorem says that

as N ! 1 the probability distribution P (N)(y) for the average of the xj ’s

y =
1

N
(x1 + x2 + · · ·+ xN ) (13.206)

tends to a gaussian in y quite independently of what the underlying proba-
bility distributions Pj(xj) happen to be.
Because expected values are linear (13.34), the mean value of the average

y is the average of the N means

µy = E[y] = E[(x1 + · · ·+ xN ) /N ] =
1

N
(E[x1] + · · ·+ E[xN ])

=
1

N
(µ1 + · · ·+ µN ) . (13.207)

Similarly, our rule (13.41) for the variance of a linear combination of inde-
pendent variables tells us that the variance of the average y is

�2y = V [(x1 + · · ·+ xN ) /N ] =
1

N2

�
�21 + · · ·+ �2N

�
. (13.208)

The independence of the random variables x1, x2, . . . , xN implies (13.36)
that their joint probability distribution factorizes

P (x1, . . . , xN ) = P1(x1)P2(x2) · · ·PN (xN ). (13.209)

We can use a delta function (3.36) to write the probability distribution
P (N)(y) for the average y = (x1 + x2 + · · ·+ xN )/N of the xj ’s as

P (N)(y) =

Z
P (x1, . . . , xN ) �((x1 + x2 + · · ·+ xN )/N � y) dNx (13.210)

where dNx = dx1 . . . dxN . Its characteristic function

P̃ (N)(k) =

Z
eiky P (N)(y) dy

=

Z
eiky

Z
P (x1, . . . , xN ) �((x1 + x2 + · · ·+ xN )/N � y) dNx dy

=

Z
exp


ik

N
(x1 + x2 + · · ·+ xN )

�
P (x1, . . . , xN ) dNx (13.211)

=

Z
exp


ik

N
(x1 + x2 + · · ·+ xN )

�
P1(x1)P2(x2) · · ·PN (xN ) dNx

is then the product

P̃ (N)(k) = P̃ 1(k/N) P̃ 2(k/N) · · · P̃N (k/N) (13.212)
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of the characteristic functions

P̃ j(k/N) =

Z
eikxj

/N Pj(xj) dxj (13.213)

of the probability distributions P1(x1), . . . , PN (xN ).
The Taylor series (13.187) for each characteristic function is

P̃ j(k/N) =
1X
n=0

(ik)n

n!Nn
µnj (13.214)

and so for big N we can use the approximation

P̃ j(k/N) ⇡ 1 +
ik

N
µj �

k2

2N2
µ2j (13.215)

in which µ2j = �2j +µ2
j by the formula (13.22) for the variance. So we have

P̃ j(k/N) ⇡ 1 +
ik

N
µj �

k2

2N2

�
�2j + µ2

j

�
(13.216)

or for large N

P̃ j(k/N) ⇡ exp

✓
ik

N
µj �

k2

2N2
�2j

◆
. (13.217)

Thus as N ! 1, the characteristic function (13.212) for the variable y
converges to

P̃ (N)(k) =
NY
j=1

P̃ j(k/N) =
NY
j=1

exp

✓
ik

N
µj �

k2

2N2
�2j

◆

= exp

24 NX
j=1

✓
ik

N
µj �

k2

2N2
�2j

◆35 = exp

✓
iµyk � 1

2
�2yk

2

◆ (13.218)

which is the characteristic function (13.176) of a gaussian (13.175) with
mean and variance

µy =
1

N

NX
j=1

µj and �2y =
1

N2

NX
j=1

�2j . (13.219)

The inverse Fourier transform (13.174) now gives the probability distribution
P (N)(y) for the average y = (x1 + x2 + · · ·+ xN )/N as

P (N)(y) =

Z 1

�1
e�iky P̃ (N)(k)

dk

2⇡
(13.220)



578 Probability and Statistics

which in view of (13.218) and (13.176) tends as N ! 1 to Gauss’s distri-
bution PG(y, µy,�y)

lim
N!1

P (N)(y) =

Z 1

�1
e�iky lim

N!1
P̃ (N)(k)

dk

2⇡

=

Z 1

�1
e�iky exp

✓
iµyk � 1

2
�2yk

2

◆
dk

2⇡
(13.221)

= PG(y, µy,�y) =
1

�y
p
2⇡

exp


�(y � µy)2

2�2y

�
with mean µy and variance �2y as given by (13.219). The sense in which

P (N)(y) converges to PG(y, µy,�y) is that for all a and b the probability
PrN (a < y < b) that y lies between a and b as determined by P (N)(y)
converges as N ! 1 to the probability that y lies between a and b as
determined by the gaussian PG(y, µy,�y)

lim
N!1

PrN (a < y < b) = lim
N!1

Z b

a
P (N)(y) dy =

Z b

a
PG(y, µy,�y) dy.

(13.222)
This type of convergence is called convergence in probability (Feller,
1966, pp. 231, 241–248).
For the special case in which all the means and variances are the same,

with µj = µ and �2j = �2, the definitions in (13.219) imply that µy = µ and
�2y = �2/N . In this case, one may show (exercise 13.32) that in terms of the
variable

u ⌘
p
N(y � µ)

�
=

⇣PN
n=1 xj

⌘
�Nµ

p
N �

(13.223)

P (N)(y) converges to a distribution that is normal

lim
N!1

P (N)(y) dy =
1p
2⇡

e�u2/2 du. (13.224)

To get a clearer idea of when the central limit theorem holds, let us
write the sum of the N variances as

SN ⌘
NX
j=1

�2j =
NX
j=1

Z 1

�1
(xj � µj)

2 Pj(xj) dxj (13.225)

and the part of this sum due to the regions within � of the means µj as

SN (�) ⌘
NX
j=1

Z µ
j

+�

µ
j

��
(xj � µj)

2 Pj(xj) dxj . (13.226)
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Figure 13.4 The probability distributions P (N)(y) (Eq. 13.210) for the
mean y = (x1 + · · · + xN )/N of N random variables drawn from the uni-
form distribution are plotted for N = 1 (dots), 2 (dot dash), 4 (dashes),
and 8 (solid). The distributions P (N)(y) rapidly approach gaussians with
the same mean µy = 1/2 but with shrinking variances �2 = 1/12N .

In terms of these definitions, Jarl Lindeberg (1876–1932) showed that P (N)(y)
converges (in probability) to the gaussian (13.221) as long as the part SN (�)
is most of SN in the sense that for every ✏ > 0

lim
N!1

SN
�
✏
p
SN
�

SN
= 1. (13.227)

This is Lindeberg’s condition (Feller 1968, p. 254; Feller 1966, pp. 252–
259; Gnedenko 1968, p. 304).

Because we dropped all but the first three terms of the series (13.214) for
the characteristic functions P̃ j(k/N), we may infer that the convergence of
the distribution P (N)(y) to a gaussian is quickest near its mean µy. If the
higher moments µnj are big, then for finite N the distribution P (N)(y) can
have tails that are fatter than those of the limiting gaussian PG(y, µy,�y).
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Example 13.14 (Illustration of the Central-Limit Theorem) The simplest
probability distribution is a random number x uniformly distributed on the
interval (0, 1). The probability distribution P (2)(y) of the mean of two such
random numbers is the integral

P (2)(y) =

Z 1

0
dx1

Z 1

0
dx2 �((x1 + x2)/2� y). (13.228)

Letting u1 = x1/2, we find

P (2)(y) = 4

Z min(y, 12 )

max(0,y� 1
2 )
✓(12 + u1 � y) du1 = 4y ✓(12 � y) + 4(1� y) ✓(y � 1

2)

(13.229)
which is the dot-dashed triangle in Fig. 13.4. The probability distribution
P (4)(y) is the dashed somewhat gaussian curve in the figure, while P (8)(y)
is the solid, nearly gaussian curve.

To work through a more complicated example of the central limit theo-
rem, we first need to learn how to generate random numbers that follow an
arbitrary distribution.

13.15 Random-Number Generators

To generate truly random numbers, one might use decaying nuclei or an
electronic device that makes white noise. But people usually settle for
pseudo-random numbers computed by a mathematical algorithm. Such
algorithms are deterministic, so the numbers they generate are not truly
random. But for most purposes, they are random enough.
The easiest way to generate pseudo-random numbers is to use a random-

number algorithm that is part of one’s favorite fortran, C, or C++ com-
piler. To run it, one first gives it a random starting point called a seed,
which is a number or a vector. For instance, to start the GNU or Intel
fortran90 compiler, one includes in the code the line

call random_seed()

before using the line

call random_number(x)

to generate a random number x uniformly distributed on the interval 0 <
x < 1, or an array of such random numbers.
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Some applications require random numbers of very high quality. For such
applications, one might use Lüscher’s ranlux (Lüscher, 1994; James, 1994).

Most random-number generators are periodic with very long periods. The
Mersenne Twister (Saito and Matsumoto, 2007) has the exceptionally
long period 219937 � 1 & 4.3⇥ 106001. Matlab uses it.

Random-number generators distribute random numbers uniformly on the
interval (0, 1). How do we make them follow an arbitrary distribution P (x)?
If the distribution is strictly positive P (x) > 0 on the relevant interval (a, b),
then its integral

F (x) =

Z x

a
P (x0) dx0 (13.230)

is a strictly increasing function on (a, b), that is, a < x < y < b implies
F (x) < F (y). Moreover, the function F (x) rises from F (a) = 0 to F (b) = 1
and takes on every value 0 < y < 1 for exactly one x in the interval (a, b).
Thus the inverse function F�1(y)

x = F�1(y) if and only if y = F (x) (13.231)

is well defined on the interval (0, 1).
Our random-number generator gives us random numbers u that are uni-

form on (0, 1). We want a random variable r whose probability Pr(r < x)
of being less than x is F (x). The trick (Knuth, 1981, p. 116) is to set

r = F�1(u) (13.232)

so that Pr(r < x) = Pr(F�1(u) < x). For by (13.231) F�1(u) < x if and
only if u < F (x). So Pr(r < x) = Pr(F�1(u) < x) = Pr(u < F (x)) = F (x).
The trick works.

Example 13.15 (P (r) = 3r2) To turn a distribution of random numbers
u uniform on (0, 1) into a distribution P (r) = 3r2 of random numbers r, we
integrate and find

F (x) =

Z x

0
P (x0) dx0 =

Z x

0
3x02 dx0 = x3. (13.233)

We then set r = F�1(u) = u1/3.

13.16 Illustration of the Central Limit Theorem

To make things simple, we’ll take all the probability distributions Pj(x)
to be the same and equal to Pj(xj) = 3x2j on the interval (0, 1) and zero
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elsewhere. Our random-number generator gives us random numbers u that
are uniformly distributed on (0, 1), so by the example (13.15) the variable
r = u1/3 is distributed as Pj(x) = 3x2.
The central limit theorem tells us that the distribution

P (N)(y) =

Z
3x21 3x

2
2 . . . 3x2N �((x1 + x2 + · · ·+ xN )/N � y) dNx (13.234)

of the mean y = (x1+ · · ·+xN )/N tends as N ! 1 to Gauss’s distribution

lim
N!1

P (N)(y) =
1

�y
p
2⇡

exp

✓
�(x� µy)2

2�2y

◆
(13.235)

with mean µy and variance �2y given by (13.219). Since the Pj ’s are all the
same, they all have the same mean

µy = µj =

Z 1

0
3x3dx =

3

4
(13.236)

and the same variance

�2j =

Z 1

0
3x4dx�

✓
3

4

◆2

=
3

5
� 9

16
=

3

80
. (13.237)

By(13.219), the variance of the mean y is then �2y = 3/80N . Thus as N
increases, the mean y tends to a gaussian with mean µy = 3/4 and ever
narrower peaks.
For N = 1, the probability distribution P (1)(y) is

P (1)(y) =

Z
3x21 �(x1 � y) dx1 = 3y2 (13.238)

which is the probability distribution we started with. In Fig. 13.5, this is
the quadratic, dotted curve.
For N = 2, the probability distribution P (1)(y) is (exercise 13.31)

P (2)(y) =

Z
3x21 3x

2
2 �((x1 + x2)/2� y) dx1 dx2 (13.239)

= ✓(12 � y)
96

5
y5 + ✓(y � 1

2)

✓
36

5
� 96

5
y5 + 48y2 � 36y

◆
.

You can get the probability distributions P (N)(y) for N = 2j by running
the fortan95 program

program clt

implicit none ! avoids typos

character(len=1)::ch_i1
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Figure 13.5 The probability distributions P (N)(y) (Eq. 13.234) for the
mean y = (x1 + · · · + xN )/N of N random variables drawn from the
quadratic distribution P (x) = 3x2 are plotted for N = 1 (dots), 2 (dot
dash), 4 (dashes), and 8 (solid). The four distributions P (N)(y) rapidly
approach gaussians with the same mean µy = 3/4 but with shrinking vari-
ances �2

y = 3/80N .

integer,parameter::dp = kind(1.d0) !define double precision

integer::j,k,n,m

integer,dimension(100)::plot = 0

real(dp)::y

real(dp),dimension(100)::rplot

real(dp),allocatable,dimension(:)::r,u

real(dp),parameter::onethird = 1.d0/3.d0

write(6,*)’What is j?’; read(5,*) j

allocate(u(2**j),r(2**j))

call init_random_seed() ! set new seed, see below

do k = 1, 10000000 ! Make the N = 2**j plot
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call random_number(u)

r = u**onethird

y = sum(r)/2**j

n = 100*y + 1

plot(n) = plot(n) + 1

end do

rplot = 100*real(plot)/sum(plot)

write(ch_i1,"(i1)") j ! turns integer j into character ch_i1

open(7,file=’plot’//ch_i1) ! opens and names files

do m = 1, 100

write(7,*) 0.01d0*(m-0.5), rplot(m)

end do

end program clt

subroutine init_random_seed()

implicit none

integer i, n, clock

integer, dimension(:), allocatable :: seed

call random_seed(size = n) ! find size of seed

allocate(seed(n))

call system_clock(count=clock) ! get time of processor clock

seed = clock + 37 * (/ (i-1, i=1, n) /) ! make seed

call random_seed(put=seed) ! set seed

deallocate(seed)

end subroutine init_random_seed

The distributions P (N)(y) for N = 1, 2, 4, and 8 are plotted in Fig. 13.5.
P (1)(y) = 3y2 is the original distribution. P (2)(y) is trying to be a gaussian,
while P (4)(y) and P (8)(y) have almost succeeded. The variance �2y = 3/80N
shrinks with N .
Although fortran95 is an ideal language for computation, C++ is more

versatile, more modular, and more suited to large projects involving many
programmers. An equivalent C++ code written by Sean Cahill is:

#include <stdlib.h>

#include <time.h>

#include <math.h>

#include <string>

#include <iostream>

#include <fstream>

#include <sstream>

#include <iomanip>
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#include <valarray>

using namespace std;

// Fills the array val with random numbers between 0 and 1

void rand01(valarray<double>& val)

{

// Records the size

unsigned int size = val.size();

// Loops through the size

unsigned int i=0;

for (i=0; i<size; i++)

{

// Generates a random number between 0 and 1

val[i] = static_cast<double>(rand()) / RAND_MAX;

}

}

void clt ()

{

// Declares local constants

const int PLOT_SIZE = 100;

const int LOOP_CALC_ITR = 10000000;

const double ONE_THIRD = 1.0 / 3.0;

// Inits local variables

double y=0;

int i=0, j=0, n=0;

// Gets the value of J

cout << "What is J? ";

cin >> j;

// Bases the vec size on J

const int VEC_SIZE = static_cast<int>(pow(2.0,j));

// Inits vectors

valarray<double> plot(PLOT_SIZE);

valarray<double> rplot(PLOT_SIZE);
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valarray<double> r(VEC_SIZE);

// Seeds random number generator

srand ( time(NULL) );

// Performs the calculations

for (i=0; i<LOOP_CALC_ITR; i++)

{

rand01(r);

r = pow(r, ONE_THIRD);

y = r.sum() / VEC_SIZE;

n = static_cast<int>(100 * y);

plot[n]++;

}

// Normalizes RPLOT

rplot = plot * (100.0 / plot.sum());

// Opens a data file

ostringstream fileName;

fileName << "plot_" << j << ".txt";

ofstream fileHandle;

fileHandle.open (fileName.str().c_str());

// Sets precision

fileHandle.setf(ios::fixed,ios::floatfield);

fileHandle.precision(7);

// Writes the data to a file

for (i=1; i<=PLOT_SIZE; i++)

fileHandle << 0.01*(i-0.5) << " " << rplot[i-1] << endl;

// Closes the data file

fileHandle.close();

}
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13.17 Measurements, Estimators, and Friedrich Bessel

A probability distribution P (x;✓) for a stochastic variable x may depend
upon one or more unknown parameters ✓ = (✓1, . . . , ✓m) such as the mean
µ and the variance �2.

Experimenters seek to determine the unknown parameters ✓ by collecting
data in the form of values x = x1, . . . , xN of the stochastic variable x. They
assume that the probability distribution for the sequence x = (x1, . . . , xN )
is the product of N factors of the physical distribution P (x;✓)

P (x;✓) =
NY
j=1

P (xj ;✓). (13.240)

They approximate the unknown value of a parameter ✓` as the mean value
of an estimator u(N)

` (x) of ✓`

E[u(N)
` ] =

Z
u(N)
` (x)P (x;✓) dNx = ✓` + b(N)

` (13.241)

in which the bias b(N)
` depends upon ✓ and N . If as N ! 1, the bias

b(N)
` ! 0, then the estimator u(N)

` (x) is consistent.
Inasmuch as the mean (13.25) is the integral of the physical distribution

µ =

Z
xP (x;✓) dx (13.242)

a natural estimator for the mean is

u(N)
µ (x) = (x1 + · · ·+ xN )/N. (13.243)

Its expected value is

E[u(N)
µ ] =

Z
u(N)
µ (x)P (x;✓) dNx =

Z
x1 + · · ·+ xN

N
P (x;✓) dNx (13.244)

=
1

N

NX
k=1

Z
xk P (xk;✓) dxk

NY
k 6=j=1

Z
P (xj ;✓) dxj =

1

N

NX
k=1

µ = µ.

Thus the natural estimator u(N)
µ (x) of the mean (13.243) has b(N)

` = 0, and
so it is a consistent and unbiased estimator for the mean.

Since the variance (13.28) of the probability distribution P (x;✓) is the
integral

�2 =

Z
(x� µ)2 P (x;✓) dx (13.245)
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the variance of the estimator uNµ is

V [uNµ ] =

Z ⇣
u(N)
µ (x)� µ

⌘2
P (x;✓) dNx =

Z 24 1

N

NX
j=1

(xj � µ)

352

P (x;✓) dNx

=
1

N2

NX
j,k=1

Z
(xj � µ) (xk � µ)P (x;✓) dNx (13.246)

=
1

N2

NX
j,k=1

�jk

Z
(xj � µ)2 P (x;✓) dNx =

1

N2

NX
j,k=1

�jk �
2 =

�2

N

in which �2 is the variance (13.245) of the physical distribution P (x;✓).
We’ll learn in the next section that no estimator of the mean can have a
lower variance than this.
A natural estimator for the variance of the probability distribution P (x;✓)

is

u(N)
�2 (x) = B

NX
j=1

⇣
xj � u(N)

µ (x)
⌘2

(13.247)

in which B = B(N) is a constant of proportionality. The naive choice
B(N) = 1/N leads to a biased estimator. To find the correct value of B, we

set the expected value E[u(N)
�2 ] equal to �2

E[u(N)
�2 ] =

Z
B

NX
j=1

⇣
xj � u(N)

µ (x)
⌘2

P (x;✓) dNx = �2 (13.248)

and solve for B. Subtracting the mean µ from both xj and u(N)
µ (x), we

express �2/B as the sum of three terms

�2

B
=

NX
j=1

Z h
xj � µ�

⇣
u(N)
µ (x)� µ

⌘i2
P (x;✓) dNx = Sjj + Sjµ + Sµµ

(13.249)
the first of which is

Sjj =
NX
j=1

Z
(xj � µ)2 P (x;✓) dNx = N�2. (13.250)
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The cross-term Sjµ is

Sjµ = � 2
NX
j=1

Z
(xj � µ)

⇣
u(N)
µ (x)� µ

⌘
P (x;✓) dNx (13.251)

= � 2

N

NX
j=1

Z
(xj � µ)

NX
k=1

(xk � µ)P (x;✓) dNx = � 2�2.

The third term is the related to the variance (13.246)

Sµµ =
NX
j=1

Z ⇣
u(N)
µ (x)� µ

⌘2
P (x;✓) dNx = NV [uNµ ] = �2. (13.252)

Thus the factor B must satisfy

�2/B = N�2 � 2�2 + �2 = (N � 1)�2 (13.253)

which tells us that B = 1/(N � 1), which is Bessel’s correction. Our
estimator for the variance of the probability distribution P (x;✓) then is

u(N)
�2 (x) =

1

N � 1

NX
j=1

⇣
xj � u(N)

µ (x)
⌘2

=
1

N � 1

NX
j=1

 
xj �

1

N

NX
k=1

xk

!2

.

(13.254)

It is consistent and unbiased since E[u(N)
�2 ] = �2 by construction (13.248).

It gives for the variance �2 of a single measurement the undefined ratio 0/0,
as it should, whereas the naive choice B = 1/N absurdly gives zero.
On the basis of N measurements x1, . . . , xN we can estimate the mean of

the unknown probability distribution P (x;✓) as µN = (x1 + · · · + xN )/N .
And we can use Bessel’s formula (13.254) to estimate the variance �2N of
the unknown distribution P (x;✓). Our formula (13.246) for the variance
�2(µN ) of the mean µN then gives

�2(µN ) =
�2N
N

=
1

N(N � 1)

NX
j=1

 
xj �

1

N

NX
k=1

xk

!2

. (13.255)

Thus we can use N measurements xj to estimate the mean µ to within a
standard error or standard deviation of

�(µN ) =

r
�2N
N

=

vuuut 1

N(N � 1)

NX
j=1

 
xj �

1

N

NX
k=1

xk

!2

. (13.256)

Few formulas have seen so much use.
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13.18 Information and Ronald Fisher

The Fisher information matrix of a distribution P (x;✓) is the mean of
products of its partial logarithmic derivatives

Fk`(✓) ⌘ E


@ lnP (x;✓)

@✓k

@ lnP (x;✓)

@✓`

�
=

Z
@ lnP (x;✓)

@✓k

@ lnP (x;✓)

@✓`
P (x;✓) dNx (13.257)

(Ronald Fisher, 1890–1962). Fisher’s matrix (exercise 13.33) is symmetric
Fk` = F`k and nonnegative (1.38), and when it is positive (1.39), it has an
inverse. By di↵erentiating the normalization conditionZ

P (x;✓) dNx = 1 (13.258)

we have

0 =

Z
@P (x;✓)

@✓k
dNx =

Z
@ lnP (x;✓)

@✓k
P (x;✓) dNx (13.259)

which says that the mean value of the logarithmic derivative of the proba-
bility distribution, a quantity called the score, vanishes. Using the notation
P,k ⌘ @P/@✓k and (lnP ),k ⌘ @ lnP/@✓k and di↵erentiating again, one has
(exercise 13.34)Z

(lnP ),k (lnP ),` P dNx = �
Z
(lnP ),k,` P dNx (13.260)

so that another form of Fisher’s information matrix is

Fk`(✓) = � E [(lnP ),k,`] = �
Z
(lnP ),k,` P dNx. (13.261)

Cramér and Rao used Fisher’s information matrix to form a lower bound
on the covariance (13.35) matrix C[uk, u`] of any two estimators. To see how
this works, we use the vanishing (13.259) of the mean of the score to write
the covariance of the kth score Vk ⌘ (lnP (x;✓)),k with the `th estimator
u`(x) as a derivative hu`i,k of the mean hu`i

C[Vk, u`] =

Z
(lnP ),k (u` � b` � ✓`)P dNx =

Z
(lnP ),k u` P dNx

=

Z
P,k(x;✓)u`(x) d

Nx = hu`i,k. (13.262)
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Thus for any two sets of constants yk and w`, we have with P =
p
P
p
P

mX
`,k=1

yk @khu`iw` =

Z mX
`,k=1

yk (lnP ),k
p
P (u`�b`�✓`)w`

p
P dNx. (13.263)

We can suppress some indices by grouping the yj ’s, the wj ’s, and so forth
into the vectors Y T = (y1, . . . , ym), WT = (w1, . . . , wm), UT = (u1, . . . , um),
BT = (b1, . . . , bm), and ⇥T = (✓1, . . . , ✓m), and by grouping the @khu`i’s into
a matrix (rU)kl which by (13.241) is

(rU)kl ⌘ @khu`i = @k (✓` + b`) = �kl + @kb`. (13.264)

In this compact notation, our relation (13.263) is

Y TrU W =

Z
Y T(r lnP )

p
P (UT �BT �⇥T)W

p
P dNx. (13.265)

Squaring, we apply Schwarz’s inequality (6.379)⇥
Y TrU W

⇤2
=

Z
Y T(r lnP )

p
P (UT �BT �⇥T)W

p
P dNx

�2
(13.266)


Z h

Y T(r lnP )
p
P
i2

dNx

Z h
(UT �BT �⇥T)W

p
P
i2

dNx

=

Z ⇥
Y Tr lnP

⇤2
P dNx

Z ⇥
(UT �BT �⇥T)W

⇤2
P dNx.

In the last line, we recognize the first integral as Y TFY , where F is Fisher’s
matrix (13.257), and the second as WTCW in which C is the covariance of
the estimators

Ck` ⌘ C[U,U ]k` = C[uk � bk � ✓k, u` � b` � ✓`]. (13.267)

So (13.266) says �
Y TrUW

�2  Y TFY WTCW. (13.268)

Thus as long as the symmetric non-negative matrix F is positive and so has
an inverse, we can set the arbitrary constant vector Y = F�1rU W and get

(WTrUTF�1rUW )2  WTrUTF�1rUW WTCW. (13.269)

Canceling a common factor, we obtain the Cramér-Rao inequality

WTCW � WTrUTF�1rU W (13.270)

often written as

C � rUT F�1rU. (13.271)



592 Probability and Statistics

By (13.264), the matrix rU is the identity matrix I plus the gradient of the
bias B

rU = I +rB. (13.272)

Thus another form of the Cramér-Rao inequality is

C � (I +rB) T F�1 (I +rB) (13.273)

or in terms of the arbitrary vector W

WTCW � WT (I +rB) T F�1 (I +rB) W. (13.274)

Letting the arbitrary vector W be Wj = �jk, one arrives at (exercise 13.35)
the Cramér-Rao lower bound on the variance V [uk] = C[uk, uk]

V [uk] � (F�1)kk +
mX
`=1

2(F�1)k`@lbk +
mX

`,j=1

(F�1)`j@lbk@jbk. (13.275)

If the estimator uk(x) is unbiased, then this lower bound simplifies to

V [uk] � (F�1)kk. (13.276)

Example 13.16 (Cramér-Rao Bound for a Gaussian) The elements of
Fisher’s information matrix for the mean µ and variance �2 of Gauss’s dis-
tribution for N data points x1, . . . , xN

P (N)
G (x, µ,�) =

NY
j=1

PG(xj ;µ,�) =

✓
1

�
p
2⇡

◆N

exp

0@�
NX
j=1

(xj � µ)2

2�2

1A
(13.277)

are

Fµµ =

Z ⇣
lnP (N)

G (x, µ,�)
⌘
,µ

�2
P (N)
G (x, µ,�) dNx

=
NX

i,j=1

Z ✓
xi � µ

�2

◆✓
xj � µ

�2

◆
P (N)
G (x, µ,�) dNx

=
NX
i=1

Z ✓
xi � µ

�2

◆2

P (N)
G (x, µ,�) dNx =

N

�2
(13.278)

Fµ�2 =

Z
(lnP (N)

G (x, µ,�)),µ (lnP
(N)
G (x, µ,�)),�2 P (N)

G (x, µ,�) dNx

=
NX

i,j=1

Z 
xi � µ

�2

� 
(xj � µ)2

2�4
� 1

2�2

�
P (N)
G (x, µ,�) dNx = 0
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F�2µ = Fµ�2 = 0, and

F�2�2 =

Z h
(lnP (N)

G (x, µ,�)),�2

i2
P (N)
G (x, µ,�) dNx

=
NX

i,j=1

Z 
(xi � µ)2

2�4
� 1

2�2

� 
(xj � µ)2

2�4
� 1

2�2

�
P (N)
G (x, µ,�) dNx

=
N

2�4
. (13.279)

The inverse of Fisher’s matrix then is diagonal with (F�1)µµ = �2/N and
(F�1)�2�2 = 2�4/N .
The variance of any unbiased estimator uµ(x) of the mean must exceed

its Cramér-Rao lower bound (13.276), and so V [uµ] � (F�1)µµ = �2/N .

The variance V [u(N)
µ ] of the natural estimator of the mean u(N)

µ (x) = (x1 +
· · ·+xN )/N is �2/N by (13.246), and so it respects and saturates the lower
bound (13.276)

V [u(N)
µ ] = E[(u(N)

µ � µ)2] = �2/N = (F�1)µµ. (13.280)

One may show (exercise 13.36) that the variance V [u(N)
�2 ] of Bessel’s esti-

mator (13.254) of the variance is (Riley et al., 2006, p. 1248)

V [u(N)
�2 ] =

1

N

✓
⌫4 �

N � 3

N � 1
�4
◆

(13.281)

where ⌫4 is the fourth central moment (13.26) of the probability distribution.
For the gaussian PG(x;µ,�) one may show (exercise 13.37) that this moment
is ⌫4 = 3�4, and so for it

VG[u
(N)
�2 ] =

2

N � 1
�4. (13.282)

Thus the variance of Bessel’s estimator of the variance respects but does not
saturate its Cramér-Rao lower bound (13.276, 13.279)

VG[u
(N)
�2 ] =

2

N � 1
�4 >

2

N
�4. (13.283)

Estimators that saturate their Cramér-Rao lower bounds are e�cient.
The natural estimator u(N)

µ (x) of the mean is e�cient as well as consistent

and unbiased, and Bessel’s estimator u(N)
�2 (x) of the variance is consistent

and unbiased but not e�cient.
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13.19 Maximum Likelihood

Suppose we measure some quantity x at various values of another variable
t and find the values x1, x2, . . . , xN at the known points t1, t2, . . . , tN . We
might want to fit these measurements to a curve x = f(t;↵) where ↵ =
↵1, . . . ,↵M is a set of M < N parameters. In view of the central limit
theorem, we’ll assume that the points xj fall in Gauss’s distribution about
the values xj = f(tj ;↵) with some known variance �2. The probability of
getting the N values x1, . . . , xN then is

P (x) =
NY
j=1

P (xj , tj ,�) =

✓
1

�
p
2⇡

◆N

exp

0@�
NX
j=1

(xj � f(tj ;↵))2

2�2

1A .

(13.284)
To find theM parameters↵, we maximize the likelihood P (x) by minimizing
the argument of its exponential

0 =
@

@↵`

NX
j=1

(xj � f(tj ;↵))2 = �2
NX
j=1

(xj � f(tj ;↵))
@f(tj ;↵)

@↵`
. (13.285)

If the function f(t;↵) depends nonlinearly upon the parameters ↵, then we
may need to use numerical methods to solve this least-squares problem.
But if the function f(t;↵) depends linearly upon the M parameters ↵

f(t;↵) =
MX
k=1

gk(t)↵k (13.286)

then the equations (13.285) that determine these parameters ↵ are linear

0 =
NX
j=1

 
xj �

MX
k=1

gk(tj)↵k

!
g`(tj). (13.287)

In matrix notation with G the N⇥M rectangular matrix with entries Gjk =
gk(tj), they are

GT x = GTG↵. (13.288)

The basis functions gk(t) may depend nonlinearly upon the independent
variable t. If one chooses them to be su�ciently di↵erent that the columns
of G are linearly independent, then the rank of G is M , and the nonnegative
matrix GTG has an inverse. The matrix G then has a pseudoinverse (1.399)

G+ =
�
GTG

��1
GT (13.289)
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and it maps the N -vector x into our parameters ↵

↵ = G+ x. (13.290)

The product G+G = IM is the M ⇥M identity matrix, while

GG+ = P (13.291)

is an N ⇥N projection operator (exercise 13.38) onto the M ⇥M subspace
for which G+G = IM is the identity operator. Like all projection operators,
P satisfies P 2 = P .

13.20 Karl Pearson’s Chi-Squared Statistic

The argument of the exponential (13.284) in P (x) is (the negative of) Karl
Pearson’s chi-squared statistic (Pearson, 1900)

�2 ⌘
NX
j=1

(xj � f(tj ;↵))2

2�2
. (13.292)

When the function f(t;↵) is linear (13.286) in ↵, the N -vector f(tj ;↵) is
f = G↵. Pearson’s �2 then is

�2 = (x�G↵)2/2�2. (13.293)

Now (13.290) tells us that ↵ = G+ x, and so in terms of the projection
operator P = GG+, the vector x�G↵ is

x�G↵ = x�GG+ x =
�
I �GG+

�
x = (I � P )x. (13.294)

So �2 is proportional to the squared length

�2 = x̃2/2�2 (13.295)

of the vector

x̃ ⌘ (I � P )x. (13.296)

Thus if the matrix G has rank M , and the vector x has N independent
components, then the vector x̃ has only N �M independent components.

Example 13.17 (Two Position Measurements) Suppose we measure a
position twice with error �, get x1 and x2, and choose GT = (1, 1). Then
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the single parameter ↵ is their average ↵ = (x1 + x2)/2, and �2 is

�2 =
n
[x1 � (x1 + x2)/2]

2 + [x2 � (x1 + x2)/2]
2
o.

2�2

=
n
[(x1 � x2)/2]

2 + [(x2 � x1)/2]
2
o.

2�2

=
h
(x1 � x2)/

p
2
i2

/2�2. (13.297)

Thus instead of having two independent components x1 and x2, �2 just has
one (x1 � x2)/

p
2.

We can see how this happens more generally if we use as basis vectors
the N � M orthonormal vectors |ji in the kernel of P (that is, the |ji’s
annihilated by P )

P |ji = 0 1  j  N �M (13.298)

and the M that lie in the range of the projection operator P

P |ki = |ki N �M + 1  k  N. (13.299)

In terms of these basis vectors, the N -vector x is

x =
N�MX
j=1

xj |ji +
NX

k=N�M+1

xk|ki (13.300)

and the last M components of the vector x̃ vanish

x̃ = (I � P )x =
N�MX
j=1

xj |ji. (13.301)

Example 13.18 (N position measurements) Suppose the N values of xj
are the measured values of the position f(tj ;↵) = xj of some object. Then
M = 1, and we choose Gj1 = g1(tj) = 1 for j = 1, . . . , N . Now GTG = N is
a 1⇥ 1 matrix, the number N , and the parameter ↵ is the mean x

↵ = G+ x =
�
GTG

��1
GT x =

1

N

NX
j=1

xj = x (13.302)

of the N position measurements xj . So the vector x̃ has components x̃j =
xj � x and is orthogonal to GT = (1, 1, . . . , 1)

GTx̃ =

0@ NX
j=1

xj

1A�Nx = 0. (13.303)
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The matrix GT has rank 1, and the vector x̃ has N � 1 independent com-
ponents.

Suppose now that we have determined our M parameters ↵ and have a
theoretical fit

x = f(t;↵) =
MX
k=1

gk(t)↵k (13.304)

which when we apply it to N measurements xj gives �2 as

�2 = (x̃)2 /2�2. (13.305)

How good is our fit?
A �2 distribution with N�M degrees of freedom has by (13.202) mean

E[�2] = N �M (13.306)

and variance

V [�2] = 2(N �M). (13.307)

So our �2 should be about

�2 ⇡ N �M ±
p

2(N �M). (13.308)

If it lies within this range, then (13.304) is a good fit to the data. But if
it exceeds N �M +

p
2(N �M), then the fit isn’t so good. On the other

hand, if �2 is less than N �M �
p
2(N �M), then we may have used too

many parameters or overestimated �. Indeed, by using N parameters with
GG+ = IN , we could get �2 = 0 every time.

The probability that �2 exceeds �2
0 is the integral (13.201)

Prn(�
2 > �2

0) =

Z 1

�2
0

Pn(�
2/2) d�2 =

Z 1

�2
0

1

2�(n/2)

✓
�2

2

◆n/2�1

e��2/2d�2

(13.309)
in which n = N � M is the number of data points minus the number of
parameters, and �(n/2) is the gamma function (5.102, 4.62). So an M -
parameter fit to N data points has only a chance of ✏ of being good if its
�2 is greater than a �2

0 for which PrN�M (�2 > �2
0) = ✏. These probabilities

PrN�M (�2 > �2
0) are plotted in Fig. 13.6 for N �M = 2, 4, 6, 8, and 10. In

particular, the probability of a value of �2 greater than �2
0 = 20 respectively

is 0.000045, 0.000499, 0.00277, 0.010336, and 0.029253 for N �M = 2, 4, 6,
8, and 10.
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Figure 13.6 The probabilities PrN�M (�2 > �2
0) are plotted from left to

right for N �M = 2, 4, 6, 8, and 10 degrees of freedom as functions of �2
0.

13.21 Kolmogorov’s Test

Suppose we want to use a sequence of N measurements xj to determine
the probability distribution that they come from. Our empirical probability
distribution is

P (N)
e (x) =

1

N

NX
j=1

�(x� xj). (13.310)

Our cumulative probability for events less than x then is

Pr(N)
e (�1, x) =

Z x

�1
P (N)
e (x0) dx0 =

Z x

�1

1

N

NX
j=1

�(x0 � xj) dx
0. (13.311)
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So if we label our events in increasing order x1  x2  · · ·  xN , then the
probability of an event less than x is

Pr(N)
e (�1, x) =

j

N
for xj < x < xj+1. (13.312)

Having approximately and experimentally determined our empirical cu-
mulative probability distribution Pr(N)

e (�1, x), we might want to know
whether it comes from some hypothetical, theoretical cumulative probabil-
ity distribution Prt(�1, x). One way to do this is to compute the distance
DN between the two cumulative probability distributions

DN = sup
�1<x<1

���Pr(N)
e (�1, x)� Prt(�1, x)

��� (13.313)

in which sup stands for supremum and means least upper bound. Since
cumulative probabilities lie between zero and one, it follows (exercise 13.39)
that the Kolmogorov distance is bounded by

0  DN  1. (13.314)

The simpler Smirnov distances

D+
N = sup

�1<x<1

⇣
Pr(N)

e (�1, x)� Prt(�1, x)
⌘

D�
N = sup

�1<x<1

⇣
Prt(�1, x)� Pr(N)

e (�1, x)
⌘ (13.315)

provide (exercise 13.40) an expression for DN as the greater of the two

DN = max(D+
N , D�

N ). (13.316)

Using our explicit expression (13.312) for the empirical cumulative probabil-

ity Pr(N)
e (�1, x) and the monotonicity (13.30) of cumulative probabilities

such as Prt(�1, x), one may show (exercise 13.41) that the Smirnov dis-
tances are given by

D+
N = sup

1jN

✓
j

N
� Prt(�1, xj)

◆
D�

N = sup
1jN

✓
Prt(�1, xj)�

j � 1

N

◆
.

(13.317)

In general, as the number N of data points increases, we expect that our
empirical distribution Pr(N)

e (�1, x) should approach the actual empirical
distribution Pre(�1, x) from which the events xj came. In this case, the
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Figure 13.7 Kolmogorov’s cumulative probability distribution K(u) de-
fined by (13.320) rises from zero to unity as u runs from zero to about
two.

Kolmogorov distance DN should converge to a limiting value D1

lim
N!1

DN = D1 = sup
�1<x<1

|Pre(�1, x)� Prt(�1, x)| 2 [0, 1]. (13.318)

If the empirical distribution Pre(�1, x) is the same as the theoretical dis-
tribution Prt(�1, x), then we expect that D1 = 0. This expectation is
confirmed by a theorem due to Glivenko (Glivenko, 1933; Cantelli, 1933)
according to which the probability that the Kolmogorov distance DN should
go to zero as N ! 1 is unity

Pr(D1 = 0) = 1. (13.319)

The real issue is how fast DN should decrease with N if our events xj do
come from Prt(�1, x). This question was answered by Kolmogorov who
showed (Kolmogorov, 1933) that if the theoretical distribution Prt(�1, x)
is continuous, then for large N (and for u > 0) the probability that

p
N DN
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Figure 13.8 The probability distributions of Gauss PG(x, 0, 1) and Gos-
set/Student PS(x, 3, 1) with zero mean and unit variance.

is less than u is given by the Kolmogorov function K(u)

lim
N!1

Pr(
p
N DN < u) = K(u) ⌘ 1 + 2

1X
k=1

(�1)ke�2k2u2
(13.320)

which is universal and independent of the particular probability
distributions Pre(�1, x) and Prt(�1, x).
On the other hand, if our events xj come from a di↵erent probability distri-

bution Pre(�1, x), then as N ! 1 we should expect that Pr(N)
e (�1, x) !

Pre(�1, x), and so that DN should converge to a positive constant D1 2
(0, 1]. In this case, we expect that as N ! 1 the quantity

p
N DN should

grow with N as
p
N D1.

Example 13.19 (Kolmogorov’s Test) How do we use (13.320)? As illus-
trated in Fig. 13.7, Kolmogorov’s distribution K(u) rises from zero to unity
on (0,1), reaching 0.9993 already at u = 2. So if our points xj come from
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the theoretical distribution, then Kolmogorov’s theorem (13.320) tells us
that as N ! 1, the probability that

p
N DN is less than 2 is more than

99.9%. But if the experimental points xj do not come from the theoretical
distribution, then the quantity

p
N DN should grow as

p
N D1 as N ! 1.

To see what this means in practice, I took as the theoretical distribution
Pt(x) = PG(x, 0, 1) which has the cumulative probability distribution (13.85)

Prt(�1, x) =
1

2

h
erf
⇣
x/

p
2
⌘
+ 1
i
. (13.321)

I generated N = 10m points xj for m = 1, 2, 3, 4, 5, and 6 from the
theoretical distribution Pt(x) = PG(x, 0, 1) and computed uN =

p
10mD10m

for these points. I found
p
10mD10m = 0.6928, 0.7074, 1.2000, 0.7356,

1.2260, and 1.0683. All were less than 2, as expected since I had taken the
experimental points xj from the theoretical distribution.
To see what happens when the experimental points do not come from the

theoretical distribution Pt(x) = PG(x, 0, 1), I generated N = 10m points xj
for m = 1, 2, 3, 4, 5, and 6 from Gosset’s Student’s distribution PS(x, 3, 1)
defined by (13.191) with ⌫ = 3 and a = 1. Both Pt(x) = PG(x, 0, 1) and
PS(x, 3, 1) have the same mean µ = 0 and standard deviation � = 1, as
illustrated in Fig. 13.8. For these points, I computed uN =

p
N DN and

found
p
10mD10m = 0.7741, 1.4522, 3.3837, 9.0478, 27.6414, and 87.8147.

Only the first two are less than 2, and the last four grow as
p
N , indicating

that the xj had not come from the theoretical distribution. In fact, we can
approximate the limiting value of DN as D1 ⇡ u106/

p
106 = 0.0878. The

exact value is (exercise 13.42) D1 = 0.0868552356.
At the risk of overemphasizing this example, I carried it one step further.

I generated ` = 1, 2, . . . 100 sets of N = 10m points x(`)j for m = 2, 3, and 4
drawn from PG(x, 0, 1) and from PS(x, 3, 1) and used them to form 100

empirical cumulative probabilities Pr(`,10
m)

e,G (�1, x) and Pr(`,10
m)

e,S (�1, x)

as defined by (13.310–13.312). Next, I computed the distances D(`)
G,G,10m

and D(`)
S,G,10m of each of these cumulative probabilities from the gaussian

distribution PG(x, 0, 1). I labeled the two sets of 100 quantities u(`,m)
G,G =

p
10mD(`)

G,G,10m and u(`,m)
S,G =

p
10mD(`)

S,G,10m in increasing order as u(m)
G,G,1 

u(m)
G,G,2  · · ·  u(m)

G,G,100 and u(m)
S,G,1  u(m)

S,G,2  · · ·  u(m)
S,G,100. I then used

(13.310–13.312) to form the cumulative probabilities

Pr(m)
e,G,G(�1, u) =

j

Ns
for u(m)

G,G,j < u < u(m)
G,G,j+1 (13.322)
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Figure 13.9 Kolmogorov’s test is applied to points xj taken from Gauss’s
distribution PG(x, 0, 1) and from Gosset’s Student’s distribution PS(x, 3, 1)
to see whether the xj came from PG(x, 0, 1). The thick smooth curve is
Kolmogorov’s universal cumulative probability distribution K(u) defined
by (13.320). The thin jagged curve that clings to K(u) is the cumulative

probability distribution Pr(4)e,G,G(�1, u) made (13.322) from points taken

from PG(x, 0, 1). The other curves Pr(m)
e,S,G(�1, u) for m = 2 and 3 are

made (13.323) from 10m points taken from PS(x, 3, 1).

and

Pr(m)
e,S,G(�1, u) =

j

Ns
for u(m)

S,G,j < u < u(m)
S,G,j+1 (13.323)

for Ns = 100 sets of 10m points.
I plotted these cumulative probabilities in Fig. 13.9. The thick smooth

curve is Kolmogorov’s universal cumulative probability distribution K(u)
defined by (13.320). The thin jagged curve that clings to K(u) is the cu-

mulative probability distribution Pr(4)e,G,G(�1, u) made from 100 sets of 104

points taken from PG(x, 0, 1). As the number of sets increases beyond 100
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and the number of points 10m rises further, the probability distributions
Pr(m)

e,G,G(�1, u) converge to the universal cumulative probability distribu-
tion K(u) and provide a numerical verification of Kolmogorov’s theorem.
Such curves make poor figures, however, because they hide beneath K(u).

The curves labeled Pr(m)
e,S,G(�1, u) for m = 2 and 3 are made from 100 sets

of N = 10m points taken from PS(x, 3, 1) and tested as to whether they
instead come from PG(x, 0, 1). Note that as N = 10m increases from 100 to

1000, the cumulative probability distribution Pr(m)
e,S,G(�1, u) moves farther

from Kolmogorov’s universal cumulative probability distribution K(u). In

fact, the curve Pr(4)e,S,G(�1, u) made from 100 sets of 104 points lies beyond
u > 8, too far to the right to fit in the figure. Kolmogorov’s test gets more
conclusive as the number of points N ! 1.

Warning, mathematical hazard: While binned data are ideal for chi-
squared fits, they ruin Kolmogorov tests. The reason is that if the data are
in bins of width w, then the empirical cumulative probability distribution
Pr(N)

e (�1, x) is a staircase function with steps as wide as the bin-width w
even in the limit N ! 1. Thus even if the data come from the the-
oretical distribution, the limiting value D1 of the Kolmogorov distance
will be positive. In fact, one may show (exercise 13.43) that when the data
do come from the theoretical probability distribution Pt(x) assumed to be
continuous, then the value of D1 is

D1 ⇡ sup
�1<x<1

wPt(x)

2
. (13.324)

Thus in this case, the quantity
p
N DN would diverge as

p
N D1 and lead

one to believe that the data had not come from Pt(x).
Suppose we have made some changes in our experimental apparatus and

our software, and we want to see whether the new data x01, x
0
2, . . . , x

0
N 0 we

took after the changes are consistent with the old data x1, x2, . . . , xN we
took before the changes. Then following equations (13.310–13.312), we can

make two empirical cumulative probability distributions—one Pr(N)
e (�1, x)

made from the N old points xj and the other Pr(N
0)

e (�1, x) made from the
N 0 new points x0j . Next, we compute the distances

D+
N,N 0 = sup

�1<x<1

⇣
Pr(N)

e (�1, x)� Pr(N
0)

e (�1, x)
⌘

DN,N 0 = sup
�1<x<1

���Pr(N)
e (�1, x)� Pr(N

0)
e (�1, x)

��� (13.325)

which are analogous to (13.313–13.316). Smirnov (Smirnov 1939; Gnedenko
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1968, p. 453) has shown that as N,N 0 ! 1 the probabilities that

u+N,N 0 =

r
NN 0

N +N 0 D
+
N,N 0 and uN,N 0 =

r
NN 0

N +N 0 DN,N 0 (13.326)

are less than u are

lim
N,N 0!1

Pr(u+N,N 0 < u) = 1� e�2u2

lim
N,N 0!1

Pr(uN,N 0 < u) = K(u)
(13.327)

in which K(u) is Kolmogorov’s distribution (13.320).

Further Reading

Students can learn more about probability and statistics in Mathematical
Methods for Physics and Engineering (Riley et al., 2006), An Introduction
to Probability Theory and Its Applications I, II (Feller, 1968, 1966), Theory
of Financial Risk and Derivative Pricing (Bouchaud and Potters, 2003), and
Probability and Statistics in Experimental Physics (Roe, 2001).

Exercises

13.1 Find the probabilities that the sum on two thrown fair dice is 4, 5, or
6.

13.2 Show that the zeroth moment µ0 and the zeroth central moment ⌫0
always are unity, and that the first central moment ⌫1 always vanishes.

13.3 Compute the variance of the uniform distribution on (0, 1).

13.4 In the formulas (13.21 & 13.28) for the variances of discrete and con-
tinuous distributions, show that E[(x� hxi)2] = µ2 � µ2.

13.5 A convex function is one that lies above its tangents: if f(x) is convex,
then f(x) � f(y)+(x�y)f 0(y). For instance, ex � 1+x. Show that for
any convex function f(x) that f(x) � f(hxi) + (x� hxi)f 0(hxi) and so
that hf(x)i � f(hxi) or E[f(x)] � f(E[x]) (Johan Jensen 1859–1925).

13.6 (a) Show that the covariance h(x� x)(y� y)i is equal to hx yi � hxihyi
as asserted in (13.35). (b) Derive (13.39) for the variance V [ax+ by].

13.7 Derive expression (13.40) for the variance of a sum of N variables.

13.8 Find the range of pq = p(1� p) for 0  p  1.

13.9 Show that the variance of the binomial distribution (13.43) is given by
(13.47).
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13.10 Redo the polling example (13.14–13.16) for the case of a slightly better
poll in which 16 people were asked and 13 said they’d vote for Nancy
Pelosi. What’s the probability that she’ll win the election? (You may
use Maple or some other program to do the tedious integral.)

13.11 For the case in which N and N � n are big, derive (13.52 & 13.53)
from (13.43 & 13.51).

13.12 For the case in which N , N �n, and n are big, derive (13.54 & 13.55)
from (13.43 & 13.51).

13.13 Without using the fact that the Poisson distribution is a limiting
form of the binomial distribution, show from its definition (13.58) and
its mean (13.60) that its variance is equal to its mean, as in (13.62).

13.14 Show that Gauss’s approximation (13.74) to the binomial distribution
is a normalized probability distribution with mean hxi = µ = pN and
variance V [x] = pqN .

13.15 Derive the approximations (13.88 & 13.89) for binomial probabilities
for large N .

13.16 Compute the central moments (13.27) of the gaussian (13.75).

13.17 Derive formula (13.84) for the probability that a gaussian random
variable falls within an interval.

13.18 Show that the expression (13.91) for P (y|600) is negligible on the
interval (0, 1) except for y near 3/5.

13.19 Determine the constant A of the homogeneous solution hv(t)igh and
derive expression (13.141) for the general solution hv(t)i to (13.139).

13.20 Derive equation (13.142) for the variance of the position r about its
mean hr(t)i. You may assume that hr(0)i = hv(0)i = 0 and that
h(v � hv(t)i)2i = 3kT/m.

13.21 Derive equation (13.172) for the ensemble average hr2(t)i for the case
in which hr2(0)i = 0 and dhr2(0)i/dt = 0.

13.22 Use (13.183) to derive the lower moments (13.185 & 13.186) of the
distributions of Gauss and Poisson.

13.23 Find the third and fourth moments µ3 and µ4 for the distributions of
Poisson (13.178) and Gauss (13.175).

13.24 Derive formula (13.190) for the first five cumulants of an arbitrary
probability distribution.

13.25 Show that like the characteristic function, the moment-generating
function M(t) for an average of several independent random variables
factorizes M(t) = M1(t/N)M2(t/N) · · · MN (t/N).

13.26 Derive formula (13.197) for the moments of the log-normal probability
distribution (13.196).
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13.27 Why doesn’t the log-normal probability distribution (13.196) have a
sensible power-series about x = 0? What are its derivatives there?

13.28 Compute the mean and variance of the exponential distribution (13.198).

13.29 Show that the chi-square distribution P3,G(v,�) with variance �2 =
kT/m is the Maxwell-Boltzmann distribution (13.100).

13.30 Compute the inverse Fourier transform (13.174) of the characteristic
function (13.203) of the symmetric Lévy distribution for ⌫ = 1 and 2.

13.31 Show that the integral that defines P (2)(y) gives formula (13.239) with
two Heaviside functions. Hint: keep x1 and x2 in the interval (0, 1).

13.32 Derive the normal distribution (13.224) in the variable (13.223) from
the central limit theorem (13.221) for the case in which all the means
and variances are the same.

13.33 Show that Fisher’s matrix (13.257) is symmetric Fk` = F`k and non-
negative (1.38), and that when it is positive (1.39), it has an inverse.

13.34 Derive the integral equations (13.259 & 13.260) from the normaliza-
tion condition

R
P (x;✓) dNx = 1.

13.35 Derive the Cramér-Rao lower bound (13.275) on the variance V [tk]
from the inequality (13.270).

13.36 Show that the variance V [u(N)
�2 ] of Bessel’s estimator (13.254) is given

by (13.281).

13.37 Compute the fourth central moment (13.27) of Gauss’s probability
distribution PG(x;µ,�2).

13.38 Show that when the real N ⇥M matrix G has rank M , the matrices
P = GG+ and P? = 1� P are projection operators that are mutually
orthogonal P (I � P ) = (I � P )P = 0.

13.39 Show that Kolmogorov’s distance DN is bounded as in (13.314).

13.40 Show that Kolmogorov’s distance DN is the greater of D+
N and D�

N .

13.41 Derive the formulas (13.317) for D+
N and D�

N .

13.42 Compute the exact limiting value D1 of the Kolmogorov distance
between PG(x, 0, 1) and PS(x, 3, 1). Use the cumulative probabilities
(13.321 & 13.194) to find the value of x that maximizes their di↵erence.
Using Maple or some other program, you should find x = 0.6276952185
and then D1 = 0.0868552356.

13.43 Show that when the data do come from the theoretical probability
distribution (assumed to be continuous) but are in bins of width w,
then the limiting value D1 of the Kolmogorov distance is given by
(13.324).
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13.44 Suppose in a poll of 1000 likely voters, 510 have said they would vote
for Nancy Pelosi. Redo example 13.9.


