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Its derivatives, which we’ll call P⌧
µ and P�
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Ẋ
⌘2

(X 0)2
. (19.11)

In terms of them, the change in the action is
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The total ⌧ -derivative integrates to a term involving the variation �Xµ which
we require to vanish at the initial and final values of ⌧ . So we drop that
term and find that the net change in the action is
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Thus the equations of motion for the string are
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but the action is stationary only ifZ
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Closed strings automatically satisfy this condition. Open strings satisfy it
if they obey for each end �⇤ of the string and each spacetime dimension µ
the boundary condition

�Xµ(⌧,�⇤)P�
µ (⌧,�⇤) = 0 (no sum over µ). (19.16)

For spatial indices, µ > 0, one can impose either the free-endpoint bound-
ary condition

P�
µ (⌧,�⇤) = 0 (19.17)

or the Dirichlet boundary condition

�Xµ(⌧,�⇤) = 0. (19.18)
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But since �X0 / �⌧ 6= 0, only the free-endpoint condition (19.17) makes
sense for the time component, µ = 0.

19.3 Regge Trajectories

The quantity P⌧
µ(⌧,�) defined as the derivative (19.10) turns out to be the

momentum density of the string. The angular momentum M12 of a string
rigidly rotating in the x, y plane is
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In a parametrization of the string with ⌧ = t and d� proportional to the
energy density dE of the string, the x, y coordinates of the string are
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The x, y components of the momentum density are
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The angular momentum (19.19) is then given by the integral

M12 =
�1
⇡

T0

c

Z �1

0
cos2

⇡�

�1
d� =

�2
1T0

2⇡c
. (19.22)

Now the parametrization d� / dE implies that �1 / E, and in fact the
energy of the string is E = T0�1. Thus the angular momentum J = |M12| of
a classical relativistic string is proportional to the square of its total energy

J =
E2
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. (19.23)

This rule is obeyed by many meson and baryon resonances. The nucleon
and five baryon resonances fit it with nearly the same value of the string
tension

T0 ⇡ 0.92 GeV/fm (19.24)

as shown by Figs. 19.1, which displays the Regge trajectories of the N
and � resonances on a single curve. Other N and � resonances, however,
do not fall on this curve.


