19.2 The Nambu-Goto String Action 705

Its derivatives, which we’ll call P, and Py, are
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In terms of them, the change in the action is
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The total 7-derivative integrates to a term involving the variation 6 X* which
we require to vanish at the initial and final values of 7. So we drop that
term and find that the net change in the action is
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Thus the equations of motion for the string are

and
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but the action is stationary only if
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Closed strings automatically satisfy this condition. Open strings satisfy it
if they obey for each end o, of the string and each spacetime dimension p
the boundary condition

SXH(T,04)P]

o (7,04) =0 (no sum over p). (19.16)

For spatial indices, p > 0, one can impose either the free-endpoint bound-
ary condition

Pi(r,0:) =0 (19.17)
or the Dirichlet boundary condition

IXH(1,0.) =0. (19.18)
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But since 6X° oc §7 # 0, only the free-endpoint condition (19.17) makes
sense for the time component, pu = 0.

19.3 Regge Trajectories

The quantity P (7,0) defined as the derivative (19.10) turns out to be the
momentum density of the string. The angular momentum Mjs of a string
rigidly rotating in the x,y plane is
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In a parametrization of the string with 7 = ¢ and do proportional to the
energy density dF of the string, the x,y coordinates of the string are

X(t,0) = T s 2 <cos LCt, sin 7rct> . (19.20)
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The x,y components of the momentum density are
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The angular momentum (19.19) is then given by the integral
To [ ek
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Now the parametrization do o« dF implies that o7 « E, and in fact the
energy of the string is F = Tyo;. Thus the angular momentum J = |Mjs| of
a classical relativistic string is proportional to the square of its total energy
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This rule is obeyed by many meson and baryon resonances. The nucleon
and five baryon resonances fit it with nearly the same value of the string
tension

To ~ 0.92 GeV/fm (19.24)
as shown by Figs. 19.1, which displays the Regge trajectories of the N

and A resonances on a single curve. Other N and A resonances, however,
do not fall on this curve.



