Its derivatives, which we'll call \mathcal{P}_{μ}^{τ} and $\mathcal{P}_{\mu}^{\sigma}$, are

$$
\begin{equation*}
\mathcal{P}_{\mu}^{\tau}=\frac{\partial L}{\partial \dot{X}^{\mu}}=-\frac{T_{0}}{c} \frac{\left(\dot{X} \cdot X^{\prime}\right) X_{\mu}^{\prime}-\left(X^{\prime}\right)^{2} \dot{X}_{\mu}}{\sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}} \tag{19.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{P}_{\mu}^{\sigma}=\frac{\partial L}{\partial X^{\prime \mu}}=-\frac{T_{0}}{c} \frac{\left(\dot{X} \cdot X^{\prime}\right) \dot{X}_{\mu}-\left(X^{\prime}\right)^{2} X_{\mu}^{\prime}}{\sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}} \tag{19.11}
\end{equation*}
$$

In terms of them, the change in the action is

$$
\begin{equation*}
\delta S=\int_{\tau_{i}}^{\tau_{f}} \int_{0}^{\sigma_{1}}\left[\frac{\partial}{\partial \tau}\left(\delta X^{\mu} \mathcal{P}_{\mu}^{\tau}\right)+\frac{\partial}{\partial \sigma}\left(\delta X^{\mu} \mathcal{P}_{\mu}^{\sigma}\right)-\delta X^{\mu}\left(\frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}_{\mu}^{\sigma}}{\partial \sigma}\right)\right] d \tau d \sigma . \tag{19.12}
\end{equation*}
$$

The total τ-derivative integrates to a term involving the variation δX^{μ} which we require to vanish at the initial and final values of τ. So we drop that term and find that the net change in the action is

$$
\begin{equation*}
\delta S=\int_{\tau_{i}}^{\tau_{f}}\left[\delta X^{\mu} \mathcal{P}_{\mu}^{\sigma}\right]_{0}^{\sigma_{1}} d \tau-\int_{\tau_{i}}^{\tau_{f}} \int_{0}^{\sigma_{1}} \delta X^{\mu}\left(\frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}_{\mu}^{\sigma}}{\partial \sigma}\right) d \tau d \sigma . \tag{19.13}
\end{equation*}
$$

Thus the equations of motion for the string are

$$
\begin{equation*}
\frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}_{\mu}^{\sigma}}{\partial \sigma}=0 \tag{19.14}
\end{equation*}
$$

but the action is stationary only if

$$
\begin{equation*}
\int \delta X^{\mu}\left(\tau, \sigma_{1}\right) \mathcal{P}_{\mu}^{\sigma}\left(\tau, \sigma_{1}\right)-\delta X^{\mu}(\tau, 0) \mathcal{P}_{\mu}^{\sigma}(\tau, 0) d \tau=0 \tag{19.15}
\end{equation*}
$$

Closed strings automatically satisfy this condition. Open strings satisfy it if they obey for each end σ_{*} of the string and each spacetime dimension μ the boundary condition

$$
\begin{equation*}
\delta X^{\mu}\left(\tau, \sigma_{*}\right) \mathcal{P}_{\mu}^{\sigma}\left(\tau, \sigma_{*}\right)=0 \quad(\text { no sum over } \mu) . \tag{19.16}
\end{equation*}
$$

For spatial indices, $\mu>0$, one can impose either the free-endpoint boundary condition

$$
\begin{equation*}
\mathcal{P}_{\mu}^{\sigma}\left(\tau, \sigma_{*}\right)=0 \tag{19.17}
\end{equation*}
$$

or the Dirichlet boundary condition

$$
\begin{equation*}
\delta X^{\mu}\left(\tau, \sigma_{*}\right)=0 . \tag{19.18}
\end{equation*}
$$

But since $\delta X^{0} \propto \delta \tau \neq 0$, only the free-endpoint condition (19.17) makes sense for the time component, $\mu=0$.

19.3 Regge Trajectories

The quantity $\mathcal{P}_{\mu}^{\tau}(\tau, \sigma)$ defined as the derivative (19.10) turns out to be the momentum density of the string. The angular momentum M_{12} of a string rigidly rotating in the x, y plane is

$$
\begin{equation*}
M_{12}(\tau)=\int_{0}^{\sigma_{1}} X_{1} \mathcal{P}_{2}^{\tau}(\tau, \sigma)-X_{2} \mathcal{P}_{1}^{\tau}(\tau, \sigma) d \sigma \tag{19.19}
\end{equation*}
$$

In a parametrization of the string with $\tau=t$ and $d \sigma$ proportional to the energy density $d E$ of the string, the x, y coordinates of the string are

$$
\begin{equation*}
\vec{X}(t, \sigma)=\frac{\sigma_{1}}{\pi} \cos \frac{\pi \sigma}{\sigma_{1}}\left(\cos \frac{\pi c t}{\sigma_{1}}, \sin \frac{\pi c t}{\sigma_{1}}\right) . \tag{19.20}
\end{equation*}
$$

The x, y components of the momentum density are

$$
\begin{equation*}
\overrightarrow{\mathcal{P}}^{\tau}(t, \sigma)=\frac{T_{0}}{c} \frac{\partial \vec{X}}{\partial t}=\frac{T_{0}}{c} \cos \frac{\pi \sigma}{\sigma_{1}}\left(-\sin \frac{\pi c t}{\sigma_{1}}, \cos \frac{\pi c t}{\sigma_{1}}\right) . \tag{19.21}
\end{equation*}
$$

The angular momentum (19.19) is then given by the integral

$$
\begin{equation*}
M_{12}=\frac{\sigma_{1}}{\pi} \frac{T_{0}}{c} \int_{0}^{\sigma_{1}} \cos ^{2} \frac{\pi \sigma}{\sigma_{1}} d \sigma=\frac{\sigma_{1}^{2} T_{0}}{2 \pi c} . \tag{19.22}
\end{equation*}
$$

Now the parametrization $d \sigma \propto d E$ implies that $\sigma_{1} \propto E$, and in fact the energy of the string is $E=T_{0} \sigma_{1}$. Thus the angular momentum $J=\left|M_{12}\right|$ of a classical relativistic string is proportional to the square of its total energy

$$
\begin{equation*}
J=\frac{E^{2}}{2 \pi T_{0} c} . \tag{19.23}
\end{equation*}
$$

This rule is obeyed by many meson and baryon resonances. The nucleon and five baryon resonances fit it with nearly the same value of the string tension

$$
\begin{equation*}
T_{0} \approx 0.92 \mathrm{GeV} / \mathrm{fm} \tag{19.24}
\end{equation*}
$$

as shown by Figs. 19.1, which displays the Regge trajectories of the N and Δ resonances on a single curve. Other N and Δ resonances, however, do not fall on this curve.

