The full action of a stretched field is

$$
\begin{equation*}
S\left(\phi_{L}\right)=\int d^{d} x\left(\frac{1}{2}(\partial \phi)^{2}+\sum_{n} g_{d, n}(L) \phi^{n}\right) \tag{17.48}
\end{equation*}
$$

in which

$$
\begin{equation*}
g_{d, n}(L)=L^{d} A^{n}(L) g_{n}=L^{d-n(d-2) / 2} g_{d, n} \tag{17.49}
\end{equation*}
$$

The beta-function

$$
\begin{equation*}
\beta\left(g_{d, n}\right) \equiv \frac{L}{g_{d, n}(L)} \frac{d g_{d, n}(L)}{d L}=d-n(d-2) / 2 \tag{17.50}
\end{equation*}
$$

is just the exponent of the coupling "constant" $g_{d, n}(L)$. If it is positive, then the coupling constant $g_{d, n}(L)$ gets stronger as $L \rightarrow \infty$; such couplings are called relevant. Couplings with vanishing exponents are insensitive to changes in L and are marginal. Those with negative exponents shrink with increasing L; they are irrelevant.

The coupling constant $g_{d, n, p}$ of a term with p derivatives and n powers of the field ϕ in a space of d dimensions varies as

$$
\begin{equation*}
g_{d, n, p}(L)=L^{d} A^{n}(L) L^{-p} g_{n, p}=L^{d-n(d-2) / 2-p} g_{d, n, p} \tag{17.51}
\end{equation*}
$$

Example 17.3 (QCD) In quantum chromodynamics, there is a cubic term $g f_{a b c} A_{0}^{a} A_{i}^{b} \partial_{0} A_{i}^{c}$ which in effect looks like $g f_{a b c} \phi_{a} \phi_{b} \dot{\phi}_{c}$. Is it relevant? Well, if we stretch space but not time, then the time derivative has no effect, and $d=3$. So the cubic, $n=3$, grows as $L^{3 / 2}$

$$
\begin{equation*}
g_{3,3,0}(L)=L^{d-n(d-2) / 2} g_{3,3,0}=L^{3 / 2} g_{3,3,0} \tag{17.52}
\end{equation*}
$$

Since this cubic term drives asymptotic freedom, its strengthening as space is stretched by the dimensionless factor L may point to a qualitative explanation of confinement. For if $g_{3,3,0}(L)$ grows with distance as $L^{3 / 2}$, then $\alpha_{s}(L)=g_{3,3,0}^{2}(L) / 4 \pi$ grows as L^{3}, and so the strength $\alpha_{s}(L r) /(L r)^{2}$ of the force between two quarks separated by a distance $L r$ grows linearly with L

$$
\begin{equation*}
F(L r)=\frac{\alpha_{s}(L r)}{(L r)^{2}}=\frac{L^{3} \alpha_{s}(r)}{(L r)^{2}}=L \frac{\alpha_{s}(r)}{r^{2}} \tag{17.53}
\end{equation*}
$$

which may be enough for quark confinement.
On the other hand, if we stretch both space and time, then the cubic $g_{4,3,1}(L)$ and quartic $g_{4,4,0}(L)$ couplings are marginal.

