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The Renormalization Group

17.1 The Renormalization Group in Quantum Field Theory

Most quantum field theories are non-linear with infinitely many degrees of
freedom, and because they describe point particles, they are rife with infini-
ties. But short-distance e↵ects, probably the finite sizes of the fundamental
constituents of matter, mitigate these infinities so that we can cope with
them consistently without knowing what happens at very short distances
and very high energies. This procedure is called renormalization.

For instance, in the theory described by the Lagrange density
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we can cut o↵ divergent integrals at some high energy ⇤. The amplitude for
the elastic scattering of two bosons of initial four-momenta p1 and p2 into
two of final momenta p01 and p02 to one-loop order (Weinberg, 1996, chap. 18)
then is proportional to (Zee, 2010, chaps. III & VI)

A = g � g2
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as long as the absolute values of the Mandelstam variables s = �(p1 + p2)2,
t = �(p1 � p01)

2, and u = �(p1 � p02)
2, which satisfy stu > 0 and s+ t+ u =

4m2, are all much larger than m2 (Stanley Mandelstam, 1928–). We define
the physical coupling constant gµ, as opposed to the bare one g that
comes with L, to be the real part of the amplitude A at s = �t = �u = µ2

gµ = g � 3g2
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Thus the bare coupling constant is g = gµ + 3g2
⇥
ln(⇤2/µ2) + 1

⇤
, and using
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this formula, we can write our expression (17.2) for the amplitude A in a
form in which the cuto↵ ⇤ no longer appears

A = gµ � g2
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This is the magic of renormalization.
The physical coupling “constant” gµ is the right coupling at energy µ

because when all the Mandelstam variables are near the renormalization
point stu = µ6, the one-loop correction is tiny, and A ⇡ gµ.
How does the physical coupling gµ depend upon the energy µ? The am-

plitude A must be independent of the renormalization energy µ, and so
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which is a version of the Callan-Symanzik equation.
We assume that when the cuto↵ ⇤ is big but finite, the bare and running

coupling constants g and gµ are so tiny that they di↵er by terms of order g2

or g2µ. Then to lowest order in g and gµ, we can replace g2 by g2µ in (17.5)
and arrive at the simple di↵erential equation
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which we can integrate
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to find the running physical coupling constant gµ at energy µ =E

gE =
gM

1� 3 gM ln(E/M)/16⇡2
. (17.8)

As the energy E =
p
s rises above M , while staying below the singular value

E = M exp(16⇡2/3gM ), the running coupling gE slowly increases. And so
does the scattering amplitude, A ⇡ gE .

Example 17.1 (Quantum Electrodynamics) Vacuum polarization makes
the amplitude for the scattering of two electrons proportional to (Weinberg,
1995, chap. 11)

A(q2) = e2
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rather than to e2. Here e is the renormalized charge, q = p01 � p1 is the
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four-momentum transferred to the first electron, and
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represents the polarization of the vacuum. We define the square of the
running coupling constant e2µ to be the amplitude (17.9) at q2 = µ2

e2µ = A(µ2) = e2
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For µ2 � m2, the vacuum polarization term ⇡(µ2) is (exercise 17.1)

⇡(µ2) ⇡ e2
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The amplitude (17.9) then is

A(q2) = e2µ
1 + ⇡(q2)
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(17.13)

and since it must be independent of µ, we have
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So we find

0 = 2eµ
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Thus since by (17.10 & 17.11) ⇡(µ2) = O(e2) and e2µ = e2 +O(e4), we find
to lowest order in eµ
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We can integrate this di↵erential equation
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and so get for the running coupling constant the formula

e2E =
e2M
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which shows that it slowly increases with the energy E. Thus, the fine-
structure constant e2µ/4⇡ rises from ↵ = 1/137.036 at me to
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