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then (exercise 16.26) the state
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is an eigenstate of the operator  m(x, 0) with eigenvalue �m(x)

 m(x, 0)|�i = �m(x)|�i. (16.212)

The inner product of two such states is (exercise 16.27)
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The identity operator is the integral
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in which
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The hamiltonian for a free Dirac field  of mass m is the spatial integral
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in which  ⌘ i †�0 and the gamma matrices (10.287) satisfy

{�a, �b} = 2 ⌘ab (16.217)

where ⌘ is the 4⇥ 4 diagonal matrix with entries (�1, 1, 1, 1). Since  |�i =
�|�i and h�0| † = h�0|�0†, the quantity h�0| exp(� i✏H
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)|�i is by (16.213)
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in which �0† � �† = ✏�̇† and �0 � � = ✏�̇. Everything within the square
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brackets is multiplied by ✏, so we may replace �0† by �† and �0 by � so as
to write to first order in ✏
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in which the dependence upon �0 is through the time derivatives.
Putting together n = 2t/✏ such matrix elements, integrating over all

intermediate-state dyadics |�ih�|, and using our formula (16.214), we find
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Integrating �̇†� by parts and dropping the surface term, we get
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Since � �†�̇ = � i��0�̇, the argument of the exponential is
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We then have
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in which L
0

(�) = � � (�µ@µ +m)� is the action density (10.289) for a free
Dirac field. Thus the amplitude is a path integral with phases given by the
classical action S
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and the integral is over all fields that go from �(x,�t) = ��t(x) to �(x, t) =
�t(x). Any normalization factor will cancel in ratios of such integrals.
Since Fermi fields anticommute, their time-ordered product has an extra
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The logic behind our formulas (16.122) and (16.128) for the time-ordered
product of bosonic fields now leads to an expression for the time-ordered


