then (exercise 16.26) the state

$$
\begin{align*}
|\chi\rangle & =\exp \left(\int \sum_{m} \psi_{m}^{\dagger}(\boldsymbol{x}, 0) \chi_{m}(\boldsymbol{x})-\frac{1}{2} \chi_{m}^{*}(\boldsymbol{x}) \chi_{m}(\boldsymbol{x}) d^{3} x\right)|0\rangle \\
& =\exp \left(\int \psi^{\dagger} \chi-\frac{1}{2} \chi^{\dagger} \chi d^{3} x\right)|0\rangle \tag{16.211}
\end{align*}
$$

is an eigenstate of the operator $\psi_{m}(\boldsymbol{x}, 0)$ with eigenvalue $\chi_{m}(\boldsymbol{x})$

$$
\begin{equation*}
\psi_{m}(\boldsymbol{x}, 0)|\chi\rangle=\chi_{m}(\boldsymbol{x})|\chi\rangle . \tag{16.212}
\end{equation*}
$$

The inner product of two such states is (exercise 16.27)

$$
\begin{equation*}
\left\langle\chi^{\prime} \mid \chi\right\rangle=\exp \left[\int \chi^{\prime \dagger} \chi-\frac{1}{2} \chi^{\prime \dagger} \chi^{\prime}-\frac{1}{2} \chi^{\dagger} \chi d^{3} x\right] . \tag{16.213}
\end{equation*}
$$

The identity operator is the integral

$$
\begin{equation*}
I=\int|\chi\rangle\langle\chi| D \chi^{*} D \chi \tag{16.214}
\end{equation*}
$$

in which

$$
\begin{equation*}
D \chi^{*} D \chi \equiv \prod_{m, \boldsymbol{x}} d \chi_{m}^{*}(\boldsymbol{x}) d \chi_{m}(\boldsymbol{x}) \tag{16.215}
\end{equation*}
$$

The hamiltonian for a free Dirac field ψ of mass m is the spatial integral

$$
\begin{equation*}
H_{0}=\int \bar{\psi}(\boldsymbol{\gamma} \cdot \boldsymbol{\nabla}+m) \psi d^{3} x \tag{16.216}
\end{equation*}
$$

in which $\bar{\psi} \equiv i \psi^{\dagger} \gamma^{0}$ and the gamma matrices (10.287) satisfy

$$
\begin{equation*}
\left\{\gamma^{a}, \gamma^{b}\right\}=2 \eta^{a b} \tag{16.217}
\end{equation*}
$$

where η is the 4×4 diagonal matrix with entries $(-1,1,1,1)$. Since $\psi|\chi\rangle=$ $\chi|\chi\rangle$ and $\left\langle\chi^{\prime}\right| \psi^{\dagger}=\left\langle\chi^{\prime}\right| \chi^{\prime \dagger}$, the quantity $\left\langle\chi^{\prime}\right| \exp \left(-i \epsilon H_{0}\right)|\chi\rangle$ is by (16.213)

$$
\begin{align*}
\left\langle\chi^{\prime}\right| e^{-i \epsilon H_{0}}|\chi\rangle & =\left\langle\chi^{\prime} \mid \chi\right\rangle \exp \left[-i \epsilon \int \bar{\chi}^{\prime}(\gamma \cdot \nabla+m) \chi d^{3} x\right] \tag{16.218}\\
& =\exp \left[\int \frac{1}{2}\left(\chi^{\prime \dagger}-\chi^{\dagger}\right) \chi-\frac{1}{2} \chi^{\prime \dagger}\left(\chi^{\prime}-\chi\right)-i \epsilon \bar{\chi}^{\prime}(\boldsymbol{\gamma} \cdot \boldsymbol{\nabla}+m) \chi d^{3} x\right] \\
& =\exp \left\{\epsilon \int\left[\frac{1}{2} \dot{\chi}^{\dagger} \chi-\frac{1}{2} \chi^{\dagger \dagger} \dot{\chi}-i \bar{\chi}^{\prime}(\boldsymbol{\gamma} \cdot \boldsymbol{\nabla}+m) \chi\right] d^{3} x\right\}
\end{align*}
$$

in which $\chi^{\prime \dagger}-\chi^{\dagger}=\epsilon \dot{\chi}^{\dagger}$ and $\chi^{\prime}-\chi=\epsilon \dot{\chi}$. Everything within the square
brackets is multiplied by ϵ, so we may replace $\chi^{\prime \dagger}$ by χ^{\dagger} and $\bar{\chi}^{\prime}$ by $\bar{\chi}$ so as to write to first order in ϵ

$$
\begin{equation*}
\left\langle\chi^{\prime}\right| e^{-i \epsilon H_{0}}|\chi\rangle=\exp \left[\epsilon \int \frac{1}{2} \dot{\chi}^{\dagger} \chi-\frac{1}{2} \chi^{\dagger} \dot{\chi}-i \bar{\chi}(\gamma \cdot \nabla+m) \chi d^{3} x\right] \tag{16.219}
\end{equation*}
$$

in which the dependence upon χ^{\prime} is through the time derivatives.
Putting together $n=2 t / \epsilon$ such matrix elements, integrating over all intermediate-state dyadics $|\chi\rangle\langle\chi|$, and using our formula (16.214), we find

$$
\begin{equation*}
\left\langle\chi_{t}\right| e^{-2 i t H_{0}}\left|\chi_{-t}\right\rangle=\int \exp \left[\int \frac{1}{2} \dot{\chi}^{\dagger} \chi-\frac{1}{2} \chi^{\dagger} \dot{\chi}-i \bar{\chi}(\gamma \cdot \nabla+m) \chi d^{4} x\right] D \chi^{*} D \chi \tag{16.220}
\end{equation*}
$$

Integrating $\dot{\chi}^{\dagger} \chi$ by parts and dropping the surface term, we get

$$
\begin{equation*}
\left\langle\chi_{t}\right| e^{-2 i t H_{0}}\left|\chi_{-t}\right\rangle=\int \exp \left[\int-\chi^{\dagger} \dot{\chi}-i \bar{\chi}(\boldsymbol{\gamma} \cdot \boldsymbol{\nabla}+m) \chi d^{4} x\right] D \chi^{*} D \chi \tag{16.221}
\end{equation*}
$$

Since $-\chi^{\dagger} \dot{\chi}=-i \bar{\chi} \gamma^{0} \dot{\chi}$, the argument of the exponential is

$$
\begin{equation*}
i \int-\bar{\chi} \gamma^{0} \dot{\chi}-\bar{\chi}(\gamma \cdot \nabla+m) \chi d^{4} x=i \int-\bar{\chi}\left(\gamma^{\mu} \partial_{\mu}+m\right) \chi d^{4} x . \tag{16.222}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\left\langle\chi_{t}\right| e^{-2 i t H_{0}}\left|\chi_{-t}\right\rangle=\int \exp \left(i \int \mathcal{L}_{0}(\chi) d^{4} x\right) D \chi^{*} D \chi \tag{16.223}
\end{equation*}
$$

in which $\mathcal{L}_{0}(\chi)=-\bar{\chi}\left(\gamma^{\mu} \partial_{\mu}+m\right) \chi$ is the action density (10.289) for a free Dirac field. Thus the amplitude is a path integral with phases given by the classical action $S_{0}[\chi]$

$$
\begin{equation*}
\left\langle\chi_{t}\right| e^{-2 i t H_{0}}\left|\chi_{-t}\right\rangle=\int e^{i \int \mathcal{L}_{0}(\chi) d^{4} x} D \chi^{*} D \chi=\int e^{i S_{0}[\chi]} D \chi^{*} D \chi \tag{16.224}
\end{equation*}
$$

and the integral is over all fields that go from $\chi(\boldsymbol{x},-t)=\chi_{-t}(\boldsymbol{x})$ to $\chi(\boldsymbol{x}, t)=$ $\chi_{t}(\boldsymbol{x})$. Any normalization factor will cancel in ratios of such integrals.

Since Fermi fields anticommute, their time-ordered product has an extra minus sign

$$
\begin{equation*}
\mathcal{T}\left[\bar{\psi}\left(x_{1}\right) \psi\left(x_{2}\right)\right]=\theta\left(x_{1}^{0}-x_{2}^{0}\right) \bar{\psi}\left(x_{1}\right) \psi\left(x_{2}\right)-\theta\left(x_{2}^{0}-x_{1}^{0}\right) \psi\left(x_{2}\right) \bar{\psi}\left(x_{1}\right) . \tag{16.225}
\end{equation*}
$$

The logic behind our formulas (16.122) and (16.128) for the time-ordered product of bosonic fields now leads to an expression for the time-ordered

