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and the functional delta function
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Y
x
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enforces the Coulomb-gauge condition. The term Lm is the action density
of the matter field  .
Tricks are available. We introduce a new field A0(x) and consider the

factor
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which is just a number independent of the charge density j0 since we can
cancel the j0 term by shifting A0. By 4�1, we mean � 1/4⇡|x � y|. By
integrating by parts, we can write the number F as (exercise 16.21)
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So when we multiply the numerator and denominator of the amplitude
(16.161) by F , the awkward Coulomb term cancels, and we get
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where now DA includes all four components Aµ and
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Since the delta-function �[r · A] enforces the Coulomb-gauge condition, we
can add to the action S0 the term (r · Ȧ)A0 which is � Ȧ · rA0 after we
integrate by parts and drop the surface term. This extra term makes the
action gauge invariant
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