Linking three of these matrix elements together and using subscripts instead of primes, we have

$$
\begin{align*}
\left\langle q_{3}\right| e^{-3 \epsilon H}\left|q_{0}\right\rangle & =\iint_{-\infty}^{\infty}\left\langle q_{3}\right| e^{-\epsilon H}\left|q_{2}\right\rangle\left\langle q_{2}\right| e^{-\epsilon H}\left|q_{1}\right\rangle\left\langle q_{1}\right| e^{-\epsilon H}\left|q_{0}\right\rangle d q_{1} d q_{2} \tag{16.23}\\
& =\left(\frac{m}{2 \pi \epsilon}\right)^{3 / 2} \iint_{-\infty}^{\infty} \exp \left\{-\epsilon \sum_{j=0}^{2}\left[\frac{1}{2} m \dot{q}_{j}^{2}+V\left(q_{j}\right)\right]\right\} d q_{1} d q_{2}
\end{align*}
$$

Boldly passing from 3 to n and suppressing some integral signs, we get

$$
\begin{align*}
\left\langle q_{n}\right| e^{-n \epsilon H}\left|q_{0}\right\rangle & =\iiint_{-\infty}^{\infty}\left\langle q_{n}\right| e^{-\epsilon H}\left|q_{n-1}\right\rangle \ldots\left\langle q_{1}\right| e^{-\epsilon H}\left|q_{0}\right\rangle d q_{1} \ldots d q_{n-1} \tag{16.24}\\
& =\left(\frac{m}{2 \pi \epsilon}\right)^{n / 2} \iiint_{-\infty}^{\infty} \exp \left\{-\epsilon \sum_{j=0}^{n-1}\left[\frac{1}{2} m \dot{q}_{j}^{2}+V\left(q_{j}\right)\right]\right\} d q_{1} \ldots d q_{n-1}
\end{align*}
$$

Writing $d t$ for ϵ and taking the limits $\epsilon \rightarrow 0$ and $n \equiv \beta / \epsilon \rightarrow \infty$, we find that the matrix element $\left\langle q_{\beta}\right| e^{-\beta H}\left|q_{0}\right\rangle$ is a path integral of the exponential of the average energy multiplied by $-\beta$

$$
\begin{equation*}
\left\langle q_{\beta}\right| e^{-\beta H}\left|q_{0}\right\rangle=\int \exp \left[-\int_{0}^{\beta} \frac{1}{2} m \dot{q}^{2}(t)+V(q(t)) d t\right] D q \tag{16.25}
\end{equation*}
$$

in which $D q \equiv(n m / 2 \pi \beta)^{n / 2} d q_{1} d q_{2} \cdots d q_{n-1}$ as $n \rightarrow \infty$. We sum over all paths $q(t)$ that go from $q(0)=q_{0}$ at inverse temperature $\beta=0$ to $q(\beta)=q_{\beta}$ at inverse temperature β.

In the limit $\beta \rightarrow \infty$, the operator $\exp (-\beta H)$ becomes proportional to a projection operator (16.1) on the ground state of the theory.

In three-dimensions with $\dot{\boldsymbol{q}}(\beta)=d \boldsymbol{q}(\beta) / d \beta$, and $\hbar \neq 1$, equation (16.25) becomes (exercise 16.28)

$$
\begin{equation*}
\left\langle\boldsymbol{q}_{\beta}\right| e^{-\beta H}\left|\boldsymbol{q}_{0}\right\rangle=\int \exp \left[-\int_{0}^{\beta} \frac{m}{2 \hbar^{2}} \dot{\boldsymbol{q}}^{2}\left(\beta^{\prime}\right)+V\left(\boldsymbol{q}\left(\beta^{\prime}\right)\right) d \beta^{\prime}\right] D \boldsymbol{q} \tag{16.26}
\end{equation*}
$$

where $D q \equiv\left(n m / 2 \pi \beta \hbar^{2}\right)^{3 n / 2} d q_{1} d q_{2} \cdots d q_{n-1}$ as $n \rightarrow \infty$.
Path integrals in imaginary time are called euclidean mainly to distinguish them from Minkowski path integrals, which represent matrix elements of the time-evolution operator $\exp (-i t H)$ in real time.

