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a complete set of momentum dyadics |pihp| and doing the resulting Fourier
transform.

Example 16.1 (The Bohm-Aharonov E↵ect) From our formula (11.311)
for the action of a relativistic particle of mass m and charge q, we infer
(exercise 16.7) that the action a nonrelativistic particle in an electromagnetic
field with no scalar potential is
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Now imagine that we shoot a beam of such particles past but not through a
narrow cylinder in which a magnetic field is confined. The particles can go
either way around the cylinder of area S but cannot enter the region of the
magnetic field. The di↵erence in the phases of the amplitudes is the loop
integral from the source to the detector and back to the source
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in which � is the magnetic flux through the cylinder.
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If we mimic the steps of the preceding section (16.5) in which the hamiltonian
is H = p2/2m, set � = it/~ = 1/kT , and use Dirac’s delta function
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then we get
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To study the ground state of the system, we set � = t/~ and let t ! 1 in
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which for D = ~/(2m) is the solution (3.200 & 13.107) of the di↵usion
equation.


