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and is positive for all functions h(t). The stationary classical trajectory
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is a minimum of the action S0[q].

The second functional derivative of the action S[q] (15.2) is
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and it can be positive, zero, or negative. Chaos sometimes arises in systems
of several particles when the second variation of S[q] about a stationary path
is negative, �2S[q][h] < 0 while �S[q][h] = 0.

The nth functional derivative is defined as
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The nth functional derivative of the functional (15.21) is
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It follows from the Taylor-series theorem (section 4.6) that
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= G[f + h] (15.28)

which illustrates an advantage of the present mathematical notation.

The functional S0[q] of Eq.(15.1) provides a simple example of the func-


