
626 Functional Derivatives

Let’s now compute the functional derivative of the action (15.2), which in-
volves the square of the time-derivative q̇(t) and the potential energy V (q(t))
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where we once again have integrated by parts and used suitable boundary
conditions to drop the surface terms. In physics notation, this is
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In these terms, the stationarity of the action S[q] is the vanishing of its
functional derivative either in the form

�S[q][h] = 0 (15.13)

for arbitrary functions h(t) (that vanish at the end points of the interval) or
equivalently in the form
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which is Lagrange’s equation of motion
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Physicists also use the compact notation
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in which �y(x) = �(x� y) and �z(x) = �(x� z).

Example 15.1 (Shortest Path is a Straight Line) On a plane, the length
of the path (x, y(x)) from (x
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The shortest path y(x) minimizes this length L[y], so
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since h(x
0

) = h(x
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) = 0. This can vanish for arbitrary h(x) only if
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which implies y00 = 0. Thus y(x) is a straight line, y = mx+ b.

15.3 Higher-Order Functional Derivatives

The second functional derivative is
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So if GN [f ] is the functional
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