Let's now compute the functional derivative of the action (15.2), which involves the square of the time-derivative $\dot{q}(t)$ and the potential energy $V(q(t))$

$$
\begin{align*}
\delta S[q][h] & =\left.\frac{d}{d \epsilon} S[q+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{d}{d \epsilon} \int d t\left[\frac{m}{2}(\dot{q}(t)+\epsilon \dot{h}(t))^{2}-V(q(t)+\epsilon h(t))\right]\right|_{\epsilon=0} \\
& =\int d t\left[m \dot{q}(t) \dot{h}(t)-V^{\prime}(q(t)) h(t)\right] \\
& =\int d t\left[-m \ddot{q}(t)-V^{\prime}(q(t))\right] h(t) \tag{15.11}
\end{align*}
$$

where we once again have integrated by parts and used suitable boundary conditions to drop the surface terms. In physics notation, this is

$$
\begin{equation*}
\frac{\delta S[q]}{\delta q(t)}=\int d t^{\prime}\left[-m \ddot{q}\left(t^{\prime}\right)-V^{\prime}\left(q\left(t^{\prime}\right)\right)\right] \delta\left(t^{\prime}-t\right)=-m \ddot{q}(t)-V^{\prime}(q(t)) \tag{15.12}
\end{equation*}
$$

In these terms, the stationarity of the action $S[q]$ is the vanishing of its functional derivative either in the form

$$
\begin{equation*}
\delta S[q][h]=0 \tag{15.13}
\end{equation*}
$$

for arbitrary functions $h(t)$ (that vanish at the end points of the interval) or equivalently in the form

$$
\begin{equation*}
\frac{\delta S[q]}{\delta q(t)}=0 \tag{15.14}
\end{equation*}
$$

which is Lagrange's equation of motion

$$
\begin{equation*}
m \ddot{q}(t)=-V^{\prime}(q(t)) . \tag{15.15}
\end{equation*}
$$

Physicists also use the compact notation

$$
\begin{equation*}
\left.\frac{\delta^{2} Z[j]}{\delta j(y) \delta j(z)} \equiv \frac{\partial^{2} Z\left[j+\epsilon \delta_{y}+\epsilon^{\prime} \delta_{z}\right]}{\partial \epsilon \partial \epsilon^{\prime}}\right|_{\epsilon=\epsilon^{\prime}=0} \tag{15.16}
\end{equation*}
$$

in which $\delta_{y}(x)=\delta(x-y)$ and $\delta_{z}(x)=\delta(x-z)$.
Example 15.1 (Shortest Path is a Straight Line) On a plane, the length of the path $(x, y(x))$ from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ is

$$
\begin{equation*}
L[y]=\int_{x_{0}}^{x_{1}} \sqrt{d x^{2}+d y^{2}}=\int_{x_{0}}^{x_{1}} \sqrt{1+y^{2}} d x . \tag{15.17}
\end{equation*}
$$

The shortest path $y(x)$ minimizes this length $L[y]$, so

$$
\begin{align*}
\delta L[y][h] & =\left.\frac{d}{d \epsilon} L[y+\epsilon h]\right|_{\epsilon=0}=\left.\frac{d}{d \epsilon} \int_{x_{0}}^{x_{1}} \sqrt{1+\left(y^{\prime}+\epsilon h^{\prime}\right)^{2}} d x\right|_{\epsilon=0} \\
& =\int_{x_{0}}^{x_{1}} \frac{y^{\prime} h^{\prime}}{\sqrt{1+y^{\prime 2}}} d x=-\int_{x_{0}}^{x_{1}} h \frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} d x=0 \tag{15.18}
\end{align*}
$$

since $h\left(x_{0}\right)=h\left(x_{1}\right)=0$. This can vanish for arbitrary $h(x)$ only if

$$
\begin{equation*}
\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=0 \tag{15.19}
\end{equation*}
$$

which implies $y^{\prime \prime}=0$. Thus $y(x)$ is a straight line, $y=m x+b$.

15.3 Higher-Order Functional Derivatives

The second functional derivative is

$$
\begin{equation*}
\delta^{2} G[f][h]=\left.\frac{d^{2}}{d \epsilon^{2}} G[f+\epsilon h]\right|_{\epsilon=0} \tag{15.20}
\end{equation*}
$$

So if $G_{N}[f]$ is the functional

$$
\begin{equation*}
G_{N}[f]=\int f^{N}(x) d x \tag{15.21}
\end{equation*}
$$

then

$$
\begin{align*}
\delta^{2} G_{N}[f][h] & =\left.\frac{d^{2}}{d \epsilon^{2}} G_{N}[f+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{d^{2}}{d \epsilon^{2}} \int(f(x)+\epsilon h(x))^{N} d x\right|_{\epsilon=0} \\
& =\left.\frac{d^{2}}{d \epsilon^{2}} \int\binom{N}{2} \epsilon^{2} h^{2}(x) f^{N-2}(x) d x\right|_{\epsilon=0} \\
& =N(N-1) \int f^{N-2}(x) h^{2}(x) d x . \tag{15.22}
\end{align*}
$$

Example $15.2\left(\delta^{2} S_{0}\right)$ The second functional derivative of the action $S_{0}[q]$ (15.1) is

$$
\begin{align*}
\delta^{2} S_{0}[q][h] & =\left.\frac{d^{2}}{d \epsilon^{2}} \int_{t_{1}}^{t_{2}} d t \frac{m}{2}\left(\frac{d q(t)}{d t}+\epsilon \frac{d h(t)}{d t}\right)^{2}\right|_{\epsilon=0} \\
& =\int_{t_{1}}^{t_{2}} d t m\left(\frac{d h(t)}{d t}\right)^{2} \geq 0 \tag{15.23}
\end{align*}
$$

