and it maps the N-vector \boldsymbol{x} into our parameters $\boldsymbol{\alpha}$

$$
\begin{equation*}
\boldsymbol{\alpha}=G^{+} \boldsymbol{x} \tag{13.290}
\end{equation*}
$$

The product $G^{+} G=I_{M}$ is the $M \times M$ identity matrix, while

$$
\begin{equation*}
G G^{+}=P \tag{13.291}
\end{equation*}
$$

is an $N \times N$ projection operator (exercise 13.38) onto the $M \times M$ subspace for which $G^{+} G=I_{M}$ is the identity operator. Like all projection operators, P satisfies $P^{2}=P$.

13.20 Karl Pearson's Chi-Squared Statistic

The argument of the exponential (13.284) in $P(\boldsymbol{x})$ is (the negative of) Karl Pearson's chi-squared statistic (Pearson, 1900)

$$
\begin{equation*}
\chi^{2} \equiv \sum_{j=1}^{N} \frac{\left(x_{j}-f\left(t_{j} ; \boldsymbol{\alpha}\right)\right)^{2}}{2 \sigma^{2}} \tag{13.292}
\end{equation*}
$$

When the function $f(t ; \boldsymbol{\alpha})$ is linear (13.286) in $\boldsymbol{\alpha}$, the N-vector $f\left(t_{j} ; \boldsymbol{\alpha}\right)$ is $f=G \boldsymbol{\alpha}$. Pearson's χ^{2} then is

$$
\begin{equation*}
\chi^{2}=(\boldsymbol{x}-G \boldsymbol{\alpha})^{2} / 2 \sigma^{2} \tag{13.293}
\end{equation*}
$$

Now (13.290) tells us that $\boldsymbol{\alpha}=G^{+} \boldsymbol{x}$, and so in terms of the projection operator $P=G G^{+}$, the vector $\boldsymbol{x}-G \boldsymbol{\alpha}$ is

$$
\begin{equation*}
\boldsymbol{x}-G \boldsymbol{\alpha}=\boldsymbol{x}-G G^{+} \boldsymbol{x}=\left(I-G G^{+}\right) \boldsymbol{x}=(I-P) \boldsymbol{x} \tag{13.294}
\end{equation*}
$$

So χ^{2} is proportional to the squared length

$$
\begin{equation*}
\chi^{2}=\tilde{\boldsymbol{x}}^{2} / 2 \sigma^{2} \tag{13.295}
\end{equation*}
$$

of the vector

$$
\begin{equation*}
\tilde{\boldsymbol{x}} \equiv(I-P) \boldsymbol{x} \tag{13.296}
\end{equation*}
$$

Thus if the matrix G has rank M, and the vector \boldsymbol{x} has N independent components, then the vector $\tilde{\boldsymbol{x}}$ has only $N-M$ independent components.

Example 13.17 (Two Position Measurements) Suppose we measure a position twice with error σ, get x_{1} and x_{2}, and choose $G^{\top}=(1,1)$. Then
the single parameter α is their average $\alpha=\left(x_{1}+x_{2}\right) / 2$, and χ^{2} is

$$
\begin{align*}
\chi^{2} & =\left\{\left[x_{1}-\left(x_{1}+x_{2}\right) / 2\right]^{2}+\left[x_{2}-\left(x_{1}+x_{2}\right) / 2\right]^{2}\right\} / 2 \sigma^{2} \\
& =\left\{\left[\left(x_{1}-x_{2}\right) / 2\right]^{2}+\left[\left(x_{2}-x_{1}\right) / 2\right]^{2}\right\} / 2 \sigma^{2} \\
& =\left[\left(x_{1}-x_{2}\right) / \sqrt{2}\right]^{2} / 2 \sigma^{2} \tag{13.297}
\end{align*}
$$

Thus instead of having two independent components x_{1} and x_{2}, χ^{2} just has one $\left(x_{1}-x_{2}\right) / \sqrt{2}$.

We can see how this happens more generally if we use as basis vectors the $N-M$ orthonormal vectors $|j\rangle$ in the kernel of P (that is, the $|j\rangle$'s annihilated by P)

$$
\begin{equation*}
P|j\rangle=0 \quad 1 \leq j \leq N-M \tag{13.298}
\end{equation*}
$$

and the M that lie in the range of the projection operator P

$$
\begin{equation*}
P|k\rangle=|k\rangle \quad N-M+1 \leq k \leq N \tag{13.299}
\end{equation*}
$$

In terms of these basis vectors, the N-vector \boldsymbol{x} is

$$
\begin{equation*}
\boldsymbol{x}=\sum_{j=1}^{N-M} x_{j}|j\rangle+\sum_{k=N-M+1}^{N} x_{k}|k\rangle \tag{13.300}
\end{equation*}
$$

and the last M components of the vector $\tilde{\boldsymbol{x}}$ vanish

$$
\begin{equation*}
\tilde{\boldsymbol{x}}=(I-P) \boldsymbol{x}=\sum_{j=1}^{N-M} x_{j}|j\rangle \tag{13.301}
\end{equation*}
$$

Example 13.18 (N position measurements) Suppose the N values of x_{j} are the measured values of the position $f\left(t_{j} ; \alpha\right)=x_{j}$ of some object. Then $M=1$, and we choose $G_{j 1}=g_{1}\left(t_{j}\right)=1$ for $j=1, \ldots, N$. Now $G^{\top} G=N$ is a 1×1 matrix, the number N, and the parameter α is the mean \bar{x}

$$
\begin{equation*}
\alpha=G^{+} \boldsymbol{x}=\left(G^{\boldsymbol{\top}} G\right)^{-1} G^{\top} \boldsymbol{x}=\frac{1}{N} \sum_{j=1}^{N} x_{j}=\bar{x} \tag{13.302}
\end{equation*}
$$

of the N position measurements x_{j}. So the vector $\tilde{\boldsymbol{x}}$ has components $\tilde{x}_{j}=$ $x_{j}-\bar{x}$ and is orthogonal to $G^{\top}=(1,1, \ldots, 1)$

$$
\begin{equation*}
G^{\boldsymbol{\top}} \tilde{\boldsymbol{x}}=\left(\sum_{j=1}^{N} x_{j}\right)-N \bar{x}=0 \tag{13.303}
\end{equation*}
$$

The matrix G^{\top} has rank 1 , and the vector $\tilde{\boldsymbol{x}}$ has $N-1$ independent components.

Suppose now that we have determined our M parameters $\boldsymbol{\alpha}$ and have a theoretical fit

$$
\begin{equation*}
x=f(t ; \boldsymbol{\alpha})=\sum_{k=1}^{M} g_{k}(t) \alpha_{k} \tag{13.304}
\end{equation*}
$$

which when we apply it to N measurements x_{j} gives χ^{2} as

$$
\begin{equation*}
\chi^{2}=(\tilde{\boldsymbol{x}})^{2} / 2 \sigma^{2} \tag{13.305}
\end{equation*}
$$

How good is our fit?
A χ^{2} distribution with $N-M$ degrees of freedom has by (13.202) mean

$$
\begin{equation*}
E\left[\chi^{2}\right]=N-M \tag{13.306}
\end{equation*}
$$

and variance

$$
\begin{equation*}
V\left[\chi^{2}\right]=2(N-M) \tag{13.307}
\end{equation*}
$$

So our χ^{2} should be about

$$
\begin{equation*}
\chi^{2} \approx N-M \pm \sqrt{2(N-M)} . \tag{13.308}
\end{equation*}
$$

If it lies within this range, then (13.304) is a good fit to the data. But if it exceeds $N-M+\sqrt{2(N-M)}$, then the fit isn't so good. On the other hand, if χ^{2} is less than $N-M-\sqrt{2(N-M)}$, then we may have used too many parameters or overestimated σ. Indeed, by using N parameters with $G G^{+}=I_{N}$, we could get $\chi^{2}=0$ every time.

The probability that χ^{2} exceeds χ_{0}^{2} is the integral (13.201)

$$
\begin{equation*}
\operatorname{Pr}_{n}\left(\chi^{2}>\chi_{0}^{2}\right)=\int_{\chi_{0}^{2}}^{\infty} P_{n}\left(\chi^{2} / 2\right) d \chi^{2}=\int_{\chi_{0}^{2}}^{\infty} \frac{1}{2 \Gamma(n / 2)}\left(\frac{\chi^{2}}{2}\right)^{n / 2-1} e^{-\chi^{2} / 2} d \chi^{2} \tag{13.309}
\end{equation*}
$$

in which $n=N-M$ is the number of data points minus the number of parameters, and $\Gamma(n / 2)$ is the gamma function (5.102, 4.62). So an M parameter fit to N data points has only a chance of ϵ of being good if its χ^{2} is greater than a χ_{0}^{2} for which $\operatorname{Pr}_{N-M}\left(\chi^{2}>\chi_{0}^{2}\right)=\epsilon$. These probabilities $\operatorname{Pr}_{N-M}\left(\chi^{2}>\chi_{0}^{2}\right)$ are plotted in Fig. 13.6 for $N-M=2,4,6,8$, and 10. In particular, the probability of a value of χ^{2} greater than $\chi_{0}^{2}=20$ respectively is $0.000045,0.000499,0.00277,0.010336$, and 0.029253 for $N-M=2,4,6$, 8 , and 10 .

The Chi-Squared Test

Figure 13.6 The probabilities $\operatorname{Pr}_{N-M}\left(\chi^{2}>\chi_{0}^{2}\right)$ are plotted from left to right for $N-M=2,4,6,8$, and 10 degrees of freedom as functions of χ_{0}^{2}.

13.21 Kolmogorov's Test

Suppose we want to use a sequence of N measurements x_{j} to determine the probability distribution that they come from. Our empirical probability distribution is

$$
\begin{equation*}
P_{e}^{(N)}(x)=\frac{1}{N} \sum_{j=1}^{N} \delta\left(x-x_{j}\right) . \tag{13.310}
\end{equation*}
$$

Our cumulative probability for events less than x then is

$$
\begin{equation*}
\operatorname{Pr}_{e}^{(N)}(-\infty, x)=\int_{-\infty}^{x} P_{e}^{(N)}\left(x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{x} \frac{1}{N} \sum_{j=1}^{N} \delta\left(x^{\prime}-x_{j}\right) d x^{\prime} . \tag{13.311}
\end{equation*}
$$

