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and it maps the N -vector x into our parameters ↵

↵ = G+ x. (13.290)

The product G+G = IM is the M ⇥M identity matrix, while

GG+ = P (13.291)

is an N ⇥N projection operator (exercise 13.38) onto the M ⇥M subspace
for which G+G = IM is the identity operator. Like all projection operators,
P satisfies P 2 = P .

13.20 Karl Pearson’s Chi-Squared Statistic

The argument of the exponential (13.284) in P (x) is (the negative of) Karl
Pearson’s chi-squared statistic (Pearson, 1900)

�2 ⌘
NX
j=1

(xj � f(tj ;↵))2

2�2

. (13.292)

When the function f(t;↵) is linear (13.286) in ↵, the N -vector f(tj ;↵) is
f = G↵. Pearson’s �2 then is

�2 = (x�G↵)2/2�2. (13.293)

Now (13.290) tells us that ↵ = G+ x, and so in terms of the projection
operator P = GG+, the vector x�G↵ is

x�G↵ = x�GG+ x =
�
I �GG+

�
x = (I � P )x. (13.294)

So �2 is proportional to the squared length

�2 = x̃2/2�2 (13.295)

of the vector

x̃ ⌘ (I � P )x. (13.296)

Thus if the matrix G has rank M , and the vector x has N independent
components, then the vector x̃ has only N �M independent components.

Example 13.17 (Two Position Measurements) Suppose we measure a
position twice with error �, get x

1

and x
2

, and choose GT = (1, 1). Then
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the single parameter ↵ is their average ↵ = (x
1

+ x
2

)/2, and �2 is
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/2�2. (13.297)

Thus instead of having two independent components x
1

and x
2

, �2 just has
one (x

1

� x
2

)/
p
2.

We can see how this happens more generally if we use as basis vectors
the N � M orthonormal vectors |ji in the kernel of P (that is, the |ji’s
annihilated by P )

P |ji = 0 1  j  N �M (13.298)

and the M that lie in the range of the projection operator P

P |ki = |ki N �M + 1  k  N. (13.299)

In terms of these basis vectors, the N -vector x is

x =
N�MX
j=1

xj |ji +
NX

k=N�M+1

xk|ki (13.300)

and the last M components of the vector x̃ vanish

x̃ = (I � P )x =
N�MX
j=1

xj |ji. (13.301)

Example 13.18 (N position measurements) Suppose the N values of xj
are the measured values of the position f(tj ;↵) = xj of some object. Then
M = 1, and we choose Gj1 = g

1

(tj) = 1 for j = 1, . . . , N . Now GTG = N is
a 1⇥ 1 matrix, the number N , and the parameter ↵ is the mean x

↵ = G+ x =
�
GTG

��1

GT x =
1

N

NX
j=1

xj = x (13.302)

of the N position measurements xj . So the vector x̃ has components x̃j =
xj � x and is orthogonal to GT = (1, 1, . . . , 1)

GTx̃ =

0@ NX
j=1

xj

1A�Nx = 0. (13.303)
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The matrix GT has rank 1, and the vector x̃ has N � 1 independent com-
ponents.

Suppose now that we have determined our M parameters ↵ and have a
theoretical fit

x = f(t;↵) =
MX
k=1

gk(t)↵k (13.304)

which when we apply it to N measurements xj gives �2 as

�2 = (x̃)2 /2�2. (13.305)

How good is our fit?
A �2 distribution with N�M degrees of freedom has by (13.202) mean

E[�2] = N �M (13.306)

and variance

V [�2] = 2(N �M). (13.307)

So our �2 should be about

�2 ⇡ N �M ±
p

2(N �M). (13.308)

If it lies within this range, then (13.304) is a good fit to the data. But if
it exceeds N �M +

p
2(N �M), then the fit isn’t so good. On the other

hand, if �2 is less than N �M �
p
2(N �M), then we may have used too

many parameters or overestimated �. Indeed, by using N parameters with
GG+ = IN , we could get �2 = 0 every time.

The probability that �2 exceeds �2

0

is the integral (13.201)

Prn(�
2 > �2

0

) =

Z 1

�2
0

Pn(�
2/2) d�2 =

Z 1

�2
0

1

2�(n/2)

✓
�2

2

◆n/2�1

e��2/2d�2

(13.309)
in which n = N � M is the number of data points minus the number of
parameters, and �(n/2) is the gamma function (5.102, 4.62). So an M -
parameter fit to N data points has only a chance of ✏ of being good if its
�2 is greater than a �2

0

for which PrN�M (�2 > �2

0

) = ✏. These probabilities
PrN�M (�2 > �2

0

) are plotted in Fig. 13.6 for N �M = 2, 4, 6, 8, and 10. In
particular, the probability of a value of �2 greater than �2

0

= 20 respectively
is 0.000045, 0.000499, 0.00277, 0.010336, and 0.029253 for N �M = 2, 4, 6,
8, and 10.
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Figure 13.6 The probabilities PrN�M (�2 > �2
0) are plotted from left to

right for N �M = 2, 4, 6, 8, and 10 degrees of freedom as functions of �2
0.

13.21 Kolmogorov’s Test

Suppose we want to use a sequence of N measurements xj to determine
the probability distribution that they come from. Our empirical probability
distribution is

P (N)

e (x) =
1

N

NX
j=1

�(x� xj). (13.310)

Our cumulative probability for events less than x then is

Pr(N)

e (�1, x) =

Z x

�1
P (N)

e (x0) dx0 =

Z x

�1

1

N

NX
j=1

�(x0 � xj) dx
0. (13.311)


