and it maps the N-vector $oldsymbol{x}$ into our parameters $oldsymbol{lpha}$

$$\boldsymbol{\alpha} = G^+ \, \boldsymbol{x}.\tag{13.290}$$

The product $G^+ G = I_M$ is the $M \times M$ identity matrix, while

$$GG^+ = P$$
 (13.291)

is an $N \times N$ projection operator (exercise 13.38) onto the $M \times M$ subspace for which $G^+G = I_M$ is the identity operator. Like all projection operators, P satisfies $P^2 = P$.

13.20 Karl Pearson's Chi-Squared Statistic

The argument of the exponential (13.284) in $P(\mathbf{x})$ is (the negative of) Karl Pearson's chi-squared statistic (Pearson, 1900)

$$\chi^2 \equiv \sum_{j=1}^{N} \frac{(x_j - f(t_j; \boldsymbol{\alpha}))^2}{2\sigma^2}.$$
 (13.292)

When the function $f(t; \boldsymbol{\alpha})$ is linear (13.286) in $\boldsymbol{\alpha}$, the N-vector $f(t_j; \boldsymbol{\alpha})$ is $f = G \boldsymbol{\alpha}$. Pearson's χ^2 then is

$$\chi^2 = (\mathbf{x} - G\,\mathbf{\alpha})^2 / 2\sigma^2. \tag{13.293}$$

Now (13.290) tells us that $\boldsymbol{\alpha} = G^+ \boldsymbol{x}$, and so in terms of the projection operator $P = G G^+$, the vector $\boldsymbol{x} - G \boldsymbol{\alpha}$ is

$$\boldsymbol{x} - \boldsymbol{G}\,\boldsymbol{\alpha} = \boldsymbol{x} - \boldsymbol{G}\,\boldsymbol{G}^{+}\,\boldsymbol{x} = \left(\boldsymbol{I} - \boldsymbol{G}\,\boldsymbol{G}^{+}\right)\boldsymbol{x} = \left(\boldsymbol{I} - \boldsymbol{P}\right)\boldsymbol{x}.$$
 (13.294)

So χ^2 is proportional to the squared length

$$\chi^2 = \tilde{\boldsymbol{x}}^2 / 2\sigma^2 \tag{13.295}$$

of the vector

$$\tilde{\boldsymbol{x}} \equiv (I - P) \, \boldsymbol{x}. \tag{13.296}$$

Thus if the matrix G has rank M, and the vector \boldsymbol{x} has N independent components, then the vector $\tilde{\boldsymbol{x}}$ has only N - M independent components.

Example 13.17 (Two Position Measurements) Suppose we measure a position twice with error σ , get x_1 and x_2 , and choose $G^{\mathsf{T}} = (1, 1)$. Then

593

Probability and Statistics

the single parameter α is their average $\alpha = (x_1 + x_2)/2$, and χ^2 is

$$\chi^{2} = \left\{ [x_{1} - (x_{1} + x_{2})/2]^{2} + [x_{2} - (x_{1} + x_{2})/2]^{2} \right\} / 2\sigma^{2}$$

= $\left\{ [(x_{1} - x_{2})/2]^{2} + [(x_{2} - x_{1})/2]^{2} \right\} / 2\sigma^{2}$
= $\left[(x_{1} - x_{2})/\sqrt{2} \right]^{2} / 2\sigma^{2}$. (13.297)

Thus instead of having two independent components x_1 and x_2 , χ^2 just has one $(x_1 - x_2)/\sqrt{2}$.

We can see how this happens more generally if we use as basis vectors the N - M orthonormal vectors $|j\rangle$ in the kernel of P (that is, the $|j\rangle$'s annihilated by P)

$$P|j\rangle = 0 \quad 1 \le j \le N - M \tag{13.298}$$

and the M that lie in the range of the projection operator P

$$P|k\rangle = |k\rangle \quad N - M + 1 \le k \le N. \tag{13.299}$$

In terms of these basis vectors, the N-vector \boldsymbol{x} is

$$\boldsymbol{x} = \sum_{j=1}^{N-M} x_j |j\rangle + \sum_{k=N-M+1}^{N} x_k |k\rangle$$
(13.300)

and the last M components of the vector $\tilde{\boldsymbol{x}}$ vanish

$$\tilde{\boldsymbol{x}} = (I - P) \, \boldsymbol{x} = \sum_{j=1}^{N-M} x_j | j \rangle.$$
(13.301)

Example 13.18 (N position measurements) Suppose the N values of x_j are the measured values of the position $f(t_j; \alpha) = x_j$ of some object. Then M = 1, and we choose $G_{j1} = g_1(t_j) = 1$ for $j = 1, \ldots, N$. Now $G^{\mathsf{T}}G = N$ is a 1×1 matrix, the number N, and the parameter α is the mean \overline{x}

$$\alpha = G^{+} \boldsymbol{x} = \left(G^{\mathsf{T}} G\right)^{-1} G^{\mathsf{T}} \boldsymbol{x} = \frac{1}{N} \sum_{j=1}^{N} x_{j} = \overline{x}$$
(13.302)

of the N position measurements x_j . So the vector \tilde{x} has components $\tilde{x}_j = x_j - \overline{x}$ and is orthogonal to $G^{\mathsf{T}} = (1, 1, \dots, 1)$

$$G^{\mathsf{T}}\tilde{\boldsymbol{x}} = \left(\sum_{j=1}^{N} x_j\right) - N\overline{\boldsymbol{x}} = 0.$$
(13.303)

594

The matrix G^{T} has rank 1, and the vector $\tilde{\boldsymbol{x}}$ has N-1 independent components.

Suppose now that we have determined our M parameters $\pmb{\alpha}$ and have a theoretical fit

$$x = f(t; \boldsymbol{\alpha}) = \sum_{k=1}^{M} g_k(t) \,\alpha_k \tag{13.304}$$

which when we apply it to N measurements x_j gives χ^2 as

$$\chi^2 = (\tilde{\boldsymbol{x}})^2 / 2\sigma^2.$$
 (13.305)

How good is our fit?

A χ^2 distribution with N-M degrees of freedom has by (13.202) mean

$$E[\chi^2] = N - M \tag{13.306}$$

and variance

$$V[\chi^2] = 2(N - M).$$
(13.307)

So our χ^2 should be about

$$\chi^2 \approx N - M \pm \sqrt{2(N - M)}.$$
 (13.308)

If it lies within this range, then (13.304) is a good fit to the data. But if it exceeds $N - M + \sqrt{2(N - M)}$, then the fit isn't so good. On the other hand, if χ^2 is less than $N - M - \sqrt{2(N - M)}$, then we may have used too many parameters or overestimated σ . Indeed, by using N parameters with $G G^+ = I_N$, we could get $\chi^2 = 0$ every time.

The probability that χ^2 exceeds χ^2_0 is the integral (13.201)

$$\Pr_{n}(\chi^{2} > \chi_{0}^{2}) = \int_{\chi_{0}^{2}}^{\infty} P_{n}(\chi^{2}/2) \, d\chi^{2} = \int_{\chi_{0}^{2}}^{\infty} \frac{1}{2\Gamma(n/2)} \left(\frac{\chi^{2}}{2}\right)^{n/2-1} e^{-\chi^{2}/2} d\chi^{2}$$
(13.309)

in which n = N - M is the number of data points minus the number of parameters, and $\Gamma(n/2)$ is the gamma function (5.102, 4.62). So an M-parameter fit to N data points has only a chance of ϵ of being good if its χ^2 is greater than a χ^2_0 for which $\Pr_{N-M}(\chi^2 > \chi^2_0) = \epsilon$. These probabilities $\Pr_{N-M}(\chi^2 > \chi^2_0)$ are plotted in Fig. 13.6 for N - M = 2, 4, 6, 8, and 10. In particular, the probability of a value of χ^2 greater than $\chi^2_0 = 20$ respectively is 0.000045, 0.000499, 0.00277, 0.010336, and 0.029253 for N - M = 2, 4, 6, 8, and 10.

Figure 13.6 The probabilities $\Pr_{N-M}(\chi^2 > \chi_0^2)$ are plotted from left to right for N-M=2, 4, 6, 8, and 10 degrees of freedom as functions of χ_0^2 .

13.21 Kolmogorov's Test

Suppose we want to use a sequence of N measurements x_j to determine the probability distribution that they come from. Our empirical probability distribution is

$$P_e^{(N)}(x) = \frac{1}{N} \sum_{j=1}^{N} \delta(x - x_j).$$
(13.310)

Our cumulative probability for events less than x then is

$$\Pr_e^{(N)}(-\infty, x) = \int_{-\infty}^x P_e^{(N)}(x') \, dx' = \int_{-\infty}^x \frac{1}{N} \sum_{j=1}^N \delta(x' - x_j) \, dx'. \quad (13.311)$$