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and it maps the N-vector @ into our parameters a
a=G"x. (13.290)
The product Gt G = I is the M x M identity matrix, while
GGt=r (13.291)

is an N x N projection operator (exercise 13.38) onto the M x M subspace
for which GTG = I, is the identity operator. Like all projection operators,
P satisfies P? = P.

13.20 Karl Pearson’s Chi-Squared Statistic

The argument of the exponential (13.284) in P(x) is (the negative of) Karl
Pearson’s chi-squared statistic (Pearson, 1900)

N
=3 (2 = f(t50))* (13.292)

202
J=1

When the function f(¢; ) is linear (13.286) in o, the N-vector f(t;; ) is
f = G a. Pearson’s x? then is

X’ =(z - Ga)*/20”. (13.293)

Now (13.290) tells us that a = G x, and so in terms of the projection
operator P = G G, the vector £ — G« is

zr—-Ga=x-GGte=(I-GG")x=(I-P)wx. (13.294)
So x? is proportional to the squared length
2 = &?/20° (13.295)
of the vector
x=(—-P)x. (13.296)

Thus if the matrix G has rank M, and the vector & has N independent
components, then the vector  has only N — M independent components.

Example 13.17 (Two Position Measurements) Suppose we measure a
position twice with error o, get x1 and z2, and choose GT = (1,1). Then
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the single parameter « is their average a = (21 + x2)/2, and x? is
2= {[ml — (w1 + 22) /2% + [w2 — (21 + x2)/2}2}/2a2
= {l@1 —22)/2 + [(22 — 21)/2)° } [ 20
- [(xl NI (13.297)

Thus instead of having two independent components 21 and x9, x? just has
one (z1 — x2)/v/2. O

We can see how this happens more generally if we use as basis vectors
the N — M orthonormal vectors |j) in the kernel of P (that is, the |j)’s
annihilated by P)

Plj)=0 1<j<N-M (13.298)
and the M that lie in the range of the projection operator P
Plky=1k) N—-—M+1<k<N. (13.299)

In terms of these basis vectors, the N-vector x is

N—-M N
c= > wli)+ D wlk) (13.300)
j=1 k=N—M+1

and the last M components of the vector & vanish

N-M

T=(-Pz= >zl (13.301)
j=1

Example 13.18 (N position measurements) Suppose the N values of z;
are the measured values of the position f(t;; ) = ; of some object. Then
M =1, and we choose Gj1 = g1(t;) =1for j=1,...,N. Now G'G =N is
a 1 x 1 matrix, the number N, and the parameter « is the mean T

N
a:G*x:(GTG)‘lGTm:%ij:f (13.302)
j=1

of the N position measurements ;. So the vector £ has components Z; =
x; — 7 and is orthogonal to GT = (1,1,...,1)

N
GTa= (> a| -Nz=0. (13.303)
j=1
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The matrix GT has rank 1, and the vector & has N — 1 independent com-
ponents. O

Suppose now that we have determined our M parameters «c and have a
theoretical fit
M

r=f(t;a) = ng(t) ag (13.304)

k=1
which when we apply it to N measurements z; gives x? as
2 = (&)? /202 (13.305)

How good is our fit?
A x? distribution with N — M degrees of freedom has by (13.202) mean

E=N-M (13.306)
and variance
VX% = 2(N — M). (13.307)
So our 2 should be about
x>~ N —M++/2(N - M). (13.308)

If it lies within this range, then (13.304) is a good fit to the data. But if
it exceeds N — M + \/2(N — M), then the fit isn’t so good. On the other
hand, if x? is less than N — M — /2(N — M), then we may have used too
many parameters or overestimated o. Indeed, by using N parameters with
GGt = Iy, we could get x? = 0 every time.

The probability that x? exceeds x2 is the integral (13.201)

') ') 1 X? ”/2_1 2
2 2y _ 2 2 _ X~ x2/2 7.2
Pr,(x* > x0) /><2 Pn(x~/2)dx /X2 T (n/2) ( 5 ) e dx
’ ’ (13.309)

in which n = N — M is the number of data points minus the number of
parameters, and I'(n/2) is the gamma function (5.102, 4.62). So an M-
parameter fit to N data points has only a chance of ¢ of being good if its
X2 is greater than a x3 for which Pry_ps(x? > x2) = €. These probabilities
Pry_na(x? > x3) are plotted in Fig. 13.6 for N — M =2, 4, 6, 8, and 10. In
particular, the probability of a value of x? greater than x3 = 20 respectively
is 0.000045, 0.000499, 0.00277, 0.010336, and 0.029253 for N — M = 2, 4, 6,
8, and 10.
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Figure 13.6 The probabilities Pry_y/(x? > x2) are plotted from left to
right for N — M =2, 4, 6, 8, and 10 degrees of freedom as functions of x3.

13.21 Kolmogorov’s Test

Suppose we want to use a sequence of N measurements x; to determine
the probability distribution that they come from. Our empirical probability

distribution is
| N
N _ 4
PWN)(z) = v §. S(x — ;).

J=1

Our cumulative probability for events less than x then is

N

—00 —

(13.310)

N
x z q
PrgN)(—oo,:E):/ Pe(N)(x/)daj,:/ Z5($'—mj)dx/. (13.311)
=1



