The central limit theorem tells us that the distribution

$$
\begin{equation*}
P^{(N)}(y)=\int 3 x_{1}^{2} 3 x_{2}^{2} \ldots 3 x_{N}^{2} \delta\left(\left(x_{1}+x_{2}+\cdots+x_{N}\right) / N-y\right) d^{N} x \tag{13.234}
\end{equation*}
$$

of the mean $y=\left(x_{1}+\cdots+x_{N}\right) / N$ tends as $N \rightarrow \infty$ to Gauss's distribution

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P^{(N)}(y)=\frac{1}{\sigma_{y} \sqrt{2 \pi}} \exp \left(-\frac{\left(x-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}\right) \tag{13.235}
\end{equation*}
$$

with mean $\mu_{y}$ and variance $\sigma_{y}^{2}$ given by (13.219). Since the $P_{j}$ 's are all the same, they all have the same mean

$$
\begin{equation*}
\mu_{y}=\mu_{j}=\int_{0}^{1} 3 x^{3} d x=\frac{3}{4} \tag{13.236}
\end{equation*}
$$

and the same variance

$$
\begin{equation*}
\sigma_{j}^{2}=\int_{0}^{1} 3 x^{4} d x-\left(\frac{3}{4}\right)^{2}=\frac{3}{5}-\frac{9}{16}=\frac{3}{80} . \tag{13.237}
\end{equation*}
$$

$\mathrm{By}(13.219)$, the variance of the mean $y$ is then $\sigma_{y}^{2}=3 / 80 N$. Thus as $N$ increases, the mean $y$ tends to a gaussian with mean $\mu_{y}=3 / 4$ and ever narrower peaks.

For $N=1$, the probability distribution $P^{(1)}(y)$ is

$$
\begin{equation*}
P^{(1)}(y)=\int 3 x_{1}^{2} \delta\left(x_{1}-y\right) d x_{1}=3 y^{2} \tag{13.238}
\end{equation*}
$$

which is the probability distribution we started with. In Fig. 13.5, this is the quadratic, dotted curve.

For $N=2$, the probability distribution $P^{(1)}(y)$ is (exercise 13.31)

$$
\begin{align*}
P^{(2)}(y) & =\int 3 x_{1}^{2} 3 x_{2}^{2} \delta\left(\left(x_{1}+x_{2}\right) / 2-y\right) d x_{1} d x_{2}  \tag{13.239}\\
& =\theta\left(\frac{1}{2}-y\right) \frac{96}{5} y^{5}+\theta\left(y-\frac{1}{2}\right)\left(\frac{36}{5}-\frac{96}{5} y^{5}+48 y^{2}-36 y\right) .
\end{align*}
$$

You can get the probability distributions $P^{(N)}(y)$ for $N=2^{j}$ by running the FORTAN95 program

```
program clt
    implicit none ! avoids typos
    character(len=1)::ch_i1
    integer,parameter::dp = kind(1.d0) !define double precision
    integer::j,k,n,m
    integer,dimension(100)::plot = 0
```

