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identically distributed random variables of zero mean and variance o2 gives
rise to Pearson’s chi-squared distribution on (0, c0)
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which for z = v, n = 3, and 0% = kT/m is (exercise 13.29) the Maxwell-
Boltzmann distribution (13.100). In terms of x = /o, it is

2\ n/2—1
P, p(x%/2)dx? = F($/2) ("2) e X124 (x2)2) . (13.201)

It has mean and variance
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and is used in the chi-squared test (Pearson, 1900).

Personal income, the amplitudes of catastrophes, the price changes of fi-
nancial assets, and many other phenomena occur on both small and large
scales. Lévy distributions describe such multi-scale phenomena. The char-
acteristic function for a symmetric Lévy distribution is for v < 2
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Its inverse Fourier transform (13.174) is for v = 1 (exercise 13.30) the
Cauchy or Lorentz distribution
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and for v = 2 the gaussian
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but for other values of v no simple expression for L, (z,a,) is available. For
0 <v < 2andasz — =oo, it falls off as |z|~(F), and for v > 2 it
assumes negative values, ceasing to be a probability distribution (Bouchaud
and Potters, 2003, pp. 10-13).

13.14 The Central Limit Theorem and Jarl Lindeberg

We have seen in sections (13.7 & 13.8) that unbiased fluctuations tend to
distribute the position and velocity of molecules according to Gauss’s distri-
bution (13.75). Gaussian distributions occur very frequently. The central
limit theorem suggests why they occur so often.



