If we substitute our formula (13.169) for $\left\langle\boldsymbol{v}^{2}(t)\right\rangle$ into the expression (13.123) for the acceleration of $\left\langle\boldsymbol{r}^{2}\right\rangle$, then we get

$$
\begin{equation*}
\frac{d^{2}\left\langle\boldsymbol{r}^{2}(t)\right\rangle}{d t^{2}}=-\frac{1}{\tau} \frac{d\left\langle\boldsymbol{r}^{2}(t)\right\rangle}{d t}+2 e^{-2 t / \tau}\left\langle\boldsymbol{v}^{2}(0)\right\rangle+\frac{6 k T}{m}\left(1-e^{-2 t / \tau}\right) \tag{13.171}
\end{equation*}
$$

The solution with both $\left\langle\boldsymbol{r}^{2}(0)\right\rangle=0$ and $d\left\langle\boldsymbol{r}^{2}(0)\right\rangle / d t=0$ is (exercise 13.21)

$$
\begin{equation*}
\left\langle\boldsymbol{r}^{2}(t)\right\rangle=\left\langle\boldsymbol{v}^{2}(0)\right\rangle \tau^{2}\left(1-e^{-t / \tau}\right)^{2}-\frac{3 k T}{m} \tau^{2}\left(1-e^{-t / \tau}\right)\left(3-e^{-t / \tau}\right)+\frac{6 k T \tau}{m} t \tag{13.172}
\end{equation*}
$$

13.12 Characteristic and Moment-Generating Functions

The Fourier transform (3.9) of a probability distribution $P(x)$ is its characteristic function $\tilde{P}(k)$ sometimes written as $\chi(k)$

$$
\begin{equation*}
\tilde{P}(k) \equiv \chi(k) \equiv E\left[e^{i k x}\right]=\int e^{i k x} P(x) d x \tag{13.173}
\end{equation*}
$$

The probability distribution $P(x)$ is the inverse Fourier transform (3.9)

$$
\begin{equation*}
P(x)=\int e^{-i k x} \tilde{P}(k) \frac{d k}{2 \pi} \tag{13.174}
\end{equation*}
$$

Example 13.10 (Gauss) The characteristic function of the gaussian

$$
\begin{equation*}
P_{G}(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{13.175}
\end{equation*}
$$

is by (3.18)

$$
\begin{align*}
\tilde{P}_{G}(k, \mu, \sigma) & =\frac{1}{\sigma \sqrt{2 \pi}} \int \exp \left(i k x-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \tag{13.176}\\
& =\frac{e^{i k \mu}}{\sigma \sqrt{2 \pi}} \int \exp \left(i k x-\frac{x^{2}}{2 \sigma^{2}}\right) d x=\exp \left(i \mu k-\frac{1}{2} \sigma^{2} k^{2}\right)
\end{align*}
$$

For a discrete probability distribution P_{n} the characteristic function is

$$
\begin{equation*}
\chi(k) \equiv E\left[e^{i k x}\right]=\sum_{n} e^{i k x_{n}} P_{n} \tag{13.177}
\end{equation*}
$$

The normalization of both continuous and discrete probability distributions implies that their characteristic functions satisfy $\tilde{P}(0)=\chi(0)=1$.

Example 13.11 (Poisson) The Poisson distribution (13.58)

$$
\begin{equation*}
P_{P}(n,\langle n\rangle)=\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle} \tag{13.178}
\end{equation*}
$$

has the characteristic function

$$
\begin{equation*}
\chi(k)=\sum_{n=0}^{\infty} e^{i k n} \frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}=e^{-\langle n\rangle} \sum_{n=0}^{\infty} \frac{\left(\langle n\rangle e^{i k}\right)^{n}}{n!}=\exp \left[\langle n\rangle\left(e^{i k}-1\right)\right] . \tag{13.179}
\end{equation*}
$$

The moment-generating function is the characteristic function evaluated at an imaginary argument

$$
\begin{equation*}
M(k) \equiv E\left[e^{k x}\right]=\tilde{P}(-i k)=\chi(-i k) . \tag{13.180}
\end{equation*}
$$

For a continuous probability distribution $P(x)$, it is

$$
\begin{equation*}
M(k)=E\left[e^{k x}\right]=\int e^{k x} P(x) d x \tag{13.181}
\end{equation*}
$$

and for a discrete probability distribution P_{n}, it is

$$
\begin{equation*}
M(k)=E\left[e^{k x}\right]=\sum_{n} e^{k x_{n}} P_{n} \tag{13.182}
\end{equation*}
$$

In both cases, the normalization of the probability distribution implies that $M(0)=1$.

Derivatives of the moment-generating function and of the characteristic function give the moments

$$
\begin{equation*}
E\left[x^{n}\right]=\mu_{n}=\left.\frac{d^{n} M(k)}{d k^{n}}\right|_{k=0}=\left.(-i)^{n} \frac{d^{n} \tilde{P}(k)}{d k^{n}}\right|_{k=0} \tag{13.183}
\end{equation*}
$$

Example 13.12 (Gauss and Poisson) The moment-generating functions for the distributions of Gauss (13.175) and Poisson (13.178) are

$$
\begin{equation*}
M_{G}(k, \mu, \sigma)=\exp \left(\mu k+\frac{1}{2} \sigma^{2} k^{2}\right) \text { and } M_{P}(k,\langle n\rangle)=\exp \left[\langle n\rangle\left(e^{k}-1\right)\right] . \tag{13.184}
\end{equation*}
$$

They give as the first three moments of these distributions

$$
\begin{array}{ll}
\mu_{G 0}=1, & \mu_{G 1}=\mu, \quad \mu_{G 2}=\mu^{2}+\sigma^{2} \\
\mu_{P 0}=1, & \mu_{P 1}=\langle n\rangle, \quad \mu_{P 2}=\langle n\rangle+\langle n\rangle^{2} \tag{13.186}
\end{array}
$$

(exercise 13.22).

Since the characteristic and moment-generating functions have derivatives (13.183) proportional to the moments μ_{n}, their Taylor series are

$$
\begin{equation*}
\tilde{P}(k)=E\left[e^{i k x}\right]=\sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} E\left[x^{n}\right]=\sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} \mu_{n} \tag{13.187}
\end{equation*}
$$

and

$$
\begin{equation*}
M(k)=E\left[e^{k x}\right]=\sum_{n=0}^{\infty} \frac{k^{n}}{n!} E\left[x^{n}\right]=\sum_{n=0}^{\infty} \frac{k^{n}}{n!} \mu_{n} \tag{13.188}
\end{equation*}
$$

The cumulants c_{n} of a probability distribution are the derivatives of the logarithm of its moment-generating function

$$
\begin{equation*}
c_{n}=\left.\frac{d^{n} \ln M(k)}{d k^{n}}\right|_{k=0}=\left.(-i)^{n} \frac{d^{n} \ln \tilde{P}(k)}{d k^{n}}\right|_{k=0} \tag{13.189}
\end{equation*}
$$

One may show (exercise 13.24) that the first five cumulants of an arbitrary probability distribution are

$$
\begin{equation*}
c_{0}=0, \quad c_{1}=\mu, \quad c_{2}=\sigma^{2}, \quad c_{3}=\nu_{3}, \quad \text { and } \quad c_{4}=\nu_{4}-3 \sigma^{4} \tag{13.190}
\end{equation*}
$$

where the ν 's are its central moments (13.27). The 3 d and 4 th normalized cumulants are the skewness $\zeta=c_{3} / \sigma^{3}=\nu_{3} / \sigma^{3}$ and the kurtosis $\kappa=$ $c_{4} / \sigma^{4}=\nu_{4} / \sigma^{4}-3$.

Example 13.13 (Gaussian Cumulants) The logarithm of the momentgenerating function (13.184) of Gauss's distribution is $\mu k+\sigma^{2} k^{2} / 2$. Thus by (13.189), $P_{G}(x, \mu, \sigma)$ has no skewness or kurtosis, its cumulants vanish $c_{G n}=0$ for $n>2$, and its fourth central moment is $\nu_{4}=3 \sigma^{4}$.

13.13 Fat Tails

The gaussian probability distribution $P_{G}(x, \mu, \sigma)$ falls off for $|x-\mu| \gg \sigma$ very fast-as $\exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)$. Many other probability distributions fall off more slowly; they have fat tails. Rare "black-swan" events-wild fluctuations, market bubbles, and crashes-lurk in their fat tails.

Gosset's distribution, which is known as Student's t-distribution with ν degrees of freedom

$$
\begin{equation*}
P_{S}(x, \nu, a)=\frac{1}{\sqrt{\pi}} \frac{\Gamma((1+\nu) / 2)}{\Gamma(\nu / 2)} \frac{a^{\nu}}{\left(a^{2}+x^{2}\right)^{(1+\nu) / 2}} \tag{13.191}
\end{equation*}
$$

has power-law tails. Its even moments are

$$
\begin{equation*}
\mu_{2 n}=(2 n-1)!!\frac{\Gamma(\nu / 2-n)}{\Gamma(\nu / 2)}\left(\frac{a^{2}}{2}\right)^{n} \tag{13.192}
\end{equation*}
$$

for $2 n<\nu$ and infinite otherwise. For $\nu=1$, it coincides with the BreitWigner or Cauchy distribution

$$
\begin{equation*}
P_{S}(x, 1, a)=\frac{1}{\pi} \frac{a}{a^{2}+x^{2}} \tag{13.193}
\end{equation*}
$$

in which $x=E-E_{0}$ and $a=\Gamma / 2$ is the half-width at half-maximum.
Two representative cumulative probabilities are (Bouchaud and Potters, 2003, p.15-16)

$$
\begin{align*}
& \operatorname{Pr}(x, \infty)=\int_{x}^{\infty} P_{S}\left(x^{\prime}, 3,1\right) d x^{\prime}=\frac{1}{2}-\frac{1}{\pi}\left[\arctan x+\frac{x}{1+x^{2}}\right] \tag{13.194}\\
& \operatorname{Pr}(x, \infty)=\int_{x}^{\infty} P_{S}\left(x^{\prime}, 4, \sqrt{2}\right) d x^{\prime}=\frac{1}{2}-\frac{3}{4} u+\frac{1}{4} u^{3} \tag{13.195}
\end{align*}
$$

where $u=x / \sqrt{2+x^{2}}$ and a is picked so $\sigma^{2}=1$. William Gosset (18761937), who worked for Guinness, wrote as Student because Guinness didn't let its employees publish.

The log-normal probability distribution on $(0, \infty)$

$$
\begin{equation*}
P_{\ln }(x)=\frac{1}{\sigma x \sqrt{2 \pi}} \exp \left[-\frac{\ln ^{2}\left(x / x_{0}\right)}{2 \sigma^{2}}\right] \tag{13.196}
\end{equation*}
$$

describes distributions of rates of return (Bouchaud and Potters, 2003, p. 9). Its moments are (exercise 13.27)

$$
\begin{equation*}
\mu_{n}=x_{0}^{n} e^{n^{2} \sigma^{2} / 2} \tag{13.197}
\end{equation*}
$$

The exponential distribution on $[0, \infty)$

$$
\begin{equation*}
P_{e}(x)=\alpha e^{-\alpha x} \tag{13.198}
\end{equation*}
$$

has (exercise 13.28) mean $\mu=1 / \alpha$ and variance $\sigma^{2}=1 / \alpha^{2}$. The sum of n independent exponentially and identically distributed random variables $x=x_{1}+\cdots+x_{n}$ is distributed on $[0, \infty)$ as (Feller, 1966, p.10)

$$
\begin{equation*}
P_{n, e}(x)=\alpha \frac{(\alpha x)^{n-1}}{(n-1)!} e^{-\alpha x} \tag{13.199}
\end{equation*}
$$

The sum of the squares $x^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ of n independent normally and
identically distributed random variables of zero mean and variance σ^{2} gives rise to Pearson's chi-squared distribution on $(0, \infty)$

$$
\begin{equation*}
P_{n, G}(x, \sigma) d x=\frac{\sqrt{2}}{\sigma} \frac{1}{\Gamma(n / 2)}\left(\frac{x}{\sigma \sqrt{2}}\right)^{n-1} e^{-x^{2} /\left(2 \sigma^{2}\right)} d x \tag{13.200}
\end{equation*}
$$

which for $x=v, n=3$, and $\sigma^{2}=k T / m$ is (exercise 13.29) the MaxwellBoltzmann distribution (13.100). In terms of $\chi=x / \sigma$, it is

$$
\begin{equation*}
P_{n}\left(\chi^{2} / 2\right) d \chi^{2}=\frac{1}{\Gamma(n / 2)}\left(\frac{\chi^{2}}{2}\right)^{n / 2-1} e^{-\chi^{2} / 2} d\left(\chi^{2} / 2\right) \tag{13.201}
\end{equation*}
$$

It has mean and variance

$$
\begin{equation*}
\mu=n \quad \text { and } \quad \sigma^{2}=2 n \tag{13.202}
\end{equation*}
$$

and is used in the chi-squared test (Pearson, 1900).
Personal income, the amplitudes of catastrophes, the price changes of financial assets, and many other phenomena occur on both small and large scales. Lévy distributions describe such multi-scale phenomena. The characteristic function for a symmetric Lévy distribution is for $\nu \leq 2$

$$
\begin{equation*}
\tilde{L}_{\nu}\left(k, a_{\nu}\right)=\exp \left(-a_{\nu}|k|^{\nu}\right) \tag{13.203}
\end{equation*}
$$

Its inverse Fourier transform (13.174) is for $\nu=1$ (exercise 13.30) the Cauchy or Lorentz distribution

$$
\begin{equation*}
L_{1}\left(x, a_{1}\right)=\frac{a_{1}}{\pi\left(x^{2}+a_{1}^{2}\right)} \tag{13.204}
\end{equation*}
$$

and for $\nu=2$ the gaussian

$$
\begin{equation*}
L_{2}\left(x, a_{2}\right)=P_{G}\left(x, 0, \sqrt{2 a_{2}}\right)=\frac{1}{2 \sqrt{\pi a_{2}}} \exp \left(-\frac{x^{2}}{4 a_{2}}\right) \tag{13.205}
\end{equation*}
$$

but for other values of ν no simple expression for $L_{\nu}\left(x, a_{\nu}\right)$ is available. For $0<\nu<2$ and as $x \rightarrow \pm \infty$, it falls off as $|x|^{-(1+\nu)}$, and for $\nu>2$ it assumes negative values, ceasing to be a probability distribution (Bouchaud and Potters, 2003, pp. 10-13).

13.14 The Central Limit Theorem and Jarl Lindeberg

We have seen in sections ($13.7 \& 13.8$) that unbiased fluctuations tend to distribute the position and velocity of molecules according to Gauss's distribution (13.75). Gaussian distributions occur very frequently. The central limit theorem suggests why they occur so often.

