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If we substitute our formula (13.169) for hv2(t)i into the expression (13.123)
for the acceleration of hr2i, then we get

d2hr2(t)i
dt2

= �1

⌧

dhr2(t)i
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. (13.171)

The solution with both hr2(0)i = 0 and dhr2(0)i/dt = 0 is (exercise 13.21)
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(13.172)

13.12 Characteristic and Moment-Generating Functions

The Fourier transform (3.9) of a probability distribution P (x) is its char-
acteristic function P̃ (k) sometimes written as �(k)

P̃ (k) ⌘ �(k) ⌘ E[eikx] =

Z
eikx P (x) dx. (13.173)

The probability distribution P (x) is the inverse Fourier transform (3.9)

P (x) =

Z
e�ikx P̃ (k)

dk

2⇡
. (13.174)

Example 13.10 (Gauss) The characteristic function of the gaussian
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is by (3.18)
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For a discrete probability distribution Pn the characteristic function is

�(k) ⌘ E[eikx] =
X
n

eikxn Pn. (13.177)

The normalization of both continuous and discrete probability distributions
implies that their characteristic functions satisfy P̃ (0) = �(0) = 1.
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Example 13.11 (Poisson) The Poisson distribution (13.58)

PP (n, hni) =
hnin
n!

e�hni (13.178)

has the characteristic function
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(13.179)

The moment-generating function is the characteristic function evalu-
ated at an imaginary argument

M(k) ⌘ E[ekx] = P̃ (�ik) = �(�ik). (13.180)

For a continuous probability distribution P (x), it is

M(k) = E[ekx] =

Z
ekx P (x) dx (13.181)

and for a discrete probability distribution Pn, it is

M(k) = E[ekx] =
X
n

ekxn Pn. (13.182)

In both cases, the normalization of the probability distribution implies that
M(0) = 1.
Derivatives of the moment-generating function and of the characteristic

function give the moments

E[xn] = µn =
dnM(k)
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Example 13.12 (Gauss and Poisson) The moment-generating functions
for the distributions of Gauss (13.175) and Poisson (13.178) are

MG(k, µ,�) = exp
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(13.184)
They give as the first three moments of these distributions

µG0

= 1, µG1

= µ, µG2

= µ2 + �2 (13.185)

µP0

= 1, µP1

= hni, µP2

= hni+ hni2 (13.186)

(exercise 13.22).
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Since the characteristic and moment-generating functions have derivatives
(13.183) proportional to the moments µn, their Taylor series are

P̃ (k) = E[eikx] =
1X
n=0

(ik)n
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and

M(k) = E[ekx] =
1X
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The cumulants cn of a probability distribution are the derivatives of the
logarithm of its moment-generating function
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One may show (exercise 13.24) that the first five cumulants of an arbitrary
probability distribution are

c
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where the ⌫’s are its central moments (13.27). The 3d and 4th normalized
cumulants are the skewness ⇣ = c

3

/�3 = ⌫
3

/�3 and the kurtosis  =
c
4

/�4 = ⌫
4

/�4 � 3.

Example 13.13 (Gaussian Cumulants) The logarithm of the moment-
generating function (13.184) of Gauss’s distribution is µk + �2k2/2. Thus
by (13.189), PG(x, µ,�) has no skewness or kurtosis, its cumulants vanish
cGn = 0 for n > 2, and its fourth central moment is ⌫

4

= 3�4.

13.13 Fat Tails

The gaussian probability distribution PG(x, µ,�) falls o↵ for |x � µ| � �
very fast—as exp

�
� (x� µ)2/2�2

�
. Many other probability distributions

fall o↵ more slowly; they have fat tails. Rare “black-swan” events—wild
fluctuations, market bubbles, and crashes—lurk in their fat tails.
Gosset’s distribution, which is known as Student’s t-distribution

with ⌫ degrees of freedom
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1p
⇡
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13.13 Fat Tails 571

has power-law tails. Its even moments are

µ
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for 2n < ⌫ and infinite otherwise. For ⌫ = 1, it coincides with the Breit-
Wigner or Cauchy distribution

PS(x, 1, a) =
1

⇡

a

a2 + x2
(13.193)

in which x = E � E
0

and a = �/2 is the half-width at half-maximum.
Two representative cumulative probabilities are (Bouchaud and Potters,

2003, p.15–16)
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where u = x/
p
2 + x2 and a is picked so �2 = 1. William Gosset (1876–

1937), who worked for Guinness, wrote as Student because Guinness didn’t
let its employees publish.

The log-normal probability distribution on (0,1)

P
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describes distributions of rates of return (Bouchaud and Potters, 2003, p. 9).
Its moments are (exercise 13.27)

µn = xn
0

en
2�2/2. (13.197)

The exponential distribution on [0,1)

Pe(x) = ↵e�↵x (13.198)

has (exercise 13.28) mean µ = 1/↵ and variance �2 = 1/↵2. The sum of
n independent exponentially and identically distributed random variables
x = x

1

+ · · ·+ xn is distributed on [0,1) as (Feller, 1966, p.10)
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(↵x)n�1
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e�↵x. (13.199)

The sum of the squares x2 = x2
1

+ · · ·+x2n of n independent normally and
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identically distributed random variables of zero mean and variance �2 gives
rise to Pearson’s chi-squared distribution on (0,1)

Pn,G(x,�)dx =
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which for x = v, n = 3, and �2 = kT/m is (exercise 13.29) the Maxwell-
Boltzmann distribution (13.100). In terms of � = x/�, it is
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It has mean and variance

µ = n and �2 = 2n (13.202)

and is used in the chi-squared test (Pearson, 1900).
Personal income, the amplitudes of catastrophes, the price changes of fi-

nancial assets, and many other phenomena occur on both small and large
scales. Lévy distributions describe such multi-scale phenomena. The char-
acteristic function for a symmetric Lévy distribution is for ⌫  2

L̃⌫(k, a⌫) = exp (� a⌫ |k|⌫) . (13.203)

Its inverse Fourier transform (13.174) is for ⌫ = 1 (exercise 13.30) the
Cauchy or Lorentz distribution
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and for ⌫ = 2 the gaussian

L
2

(x, a
2

) = PG(x, 0,
p
2a

2

) =
1

2
p
⇡a

2

exp

✓
� x2

4a
2

◆
(13.205)

but for other values of ⌫ no simple expression for L⌫(x, a⌫) is available. For
0 < ⌫ < 2 and as x ! ±1, it falls o↵ as |x|�(1+⌫), and for ⌫ > 2 it
assumes negative values, ceasing to be a probability distribution (Bouchaud
and Potters, 2003, pp. 10–13).

13.14 The Central Limit Theorem and Jarl Lindeberg

We have seen in sections (13.7 & 13.8) that unbiased fluctuations tend to
distribute the position and velocity of molecules according to Gauss’s distri-
bution (13.75). Gaussian distributions occur very frequently. The central
limit theorem suggests why they occur so often.


