α . The probability $P(n)$ of finding *n* quanta in the state $|\alpha\rangle$ is the square of the absolute value of the inner product $\langle n | \alpha \rangle$

$$
P(n) = |\langle n | \alpha \rangle|^2 = \frac{|\alpha|^{2n}}{n!} e^{-|\alpha|^2}
$$
 (13.64)

which is a Poisson distribution $P(n) = P_P(n, |\alpha|^2)$ with mean and variance $\mu = \langle n \rangle = V(\alpha) = |\alpha|^2.$ \Box

13.5 The Gaussian Distribution

Gauss considered the binomial distribution in the limit $N \to \infty$ with the probability *p* fixed. In this limit, the binomial probability

$$
P_B(n, p, N) = \frac{N!}{n! \, (N-n)!} \, p^n \, q^{N-n} \tag{13.65}
$$

is very tiny unless *n* is near *pN* which means that $n \approx pN$ and $N - n \approx$ $(1 - p)N = qN$ are comparable. So the limit $N \to \infty$ effectively is one in which *n* and $N - n$ also tend to infinity. The approximation (13.54)

$$
P_B(n, p, N) \approx \sqrt{\frac{N}{2\pi n(N-n)}} \left(\frac{pN}{n}\right)^n \left(\frac{qN}{N-n}\right)^{N-n} R_3(n, N) \quad (13.66)
$$

applies in which $R_3(n, N) \to 1$ as *N*, $N - n$, and *n* all increase without limit.

Because the probability $P_B(n, p, N)$ is negligible unless $n \approx pN$, we set $y = n - pN$ and treat y/n as small. Since $n = pN + y$ and $N - n =$ $(1 - p)N + pN - n = qN - y$, we may write the square-root as

$$
\sqrt{\frac{N}{2\pi n (N-n)}} = \frac{1}{\sqrt{2\pi N [(pN+y)/N] [(qN-y)/N]}}
$$

$$
= \frac{1}{\sqrt{2\pi pqN (1+y/pN) (1-y/qN)}}.
$$
(13.67)

Since *y* remains finite as $N \to \infty$, we get in this limit

$$
\lim_{N \to \infty} \sqrt{\frac{N}{2\pi n \left(N - n\right)}} = \frac{1}{\sqrt{2\pi p q N}}.\tag{13.68}
$$