The mean number of successes

$$
\begin{equation*}
\mu=\langle n\rangle_{B}=\sum_{n=0}^{N} n P_{B}(n, p, N)=\sum_{n=0}^{N} n\binom{N}{n} p^{n} q^{N-n} \tag{13.45}
\end{equation*}
$$

is a partial derivative with respect to p with q held fixed

$$
\begin{align*}
\langle n\rangle_{B} & =p \frac{\partial}{\partial p} \sum_{n=0}^{N}\binom{N}{n} p^{n} q^{N-n} \\
& =p \frac{\partial}{\partial p}(p+q)^{N}=N p(p+q)^{N-1}=N p \tag{13.46}
\end{align*}
$$

which verifies the estimate (13.42).
One may show (exercise 13.9) that the variance (13.21) of the binomial distribution is

$$
\begin{equation*}
V_{B}=\left\langle(n-\langle n\rangle)^{2}\right\rangle=p(1-p) N . \tag{13.47}
\end{equation*}
$$

Its standard deviation (13.23) is

$$
\begin{equation*}
\sigma_{B}=\sqrt{V_{B}}=\sqrt{p(1-p) N} . \tag{13.48}
\end{equation*}
$$

The ratio of the width to the mean

$$
\begin{equation*}
\frac{\sigma_{B}}{\langle n\rangle_{B}}=\frac{\sqrt{p(1-p) N}}{N p}=\sqrt{\frac{1-p}{N p}} \tag{13.49}
\end{equation*}
$$

decreases with N as $1 / \sqrt{N}$.
Example 13.5 (Avogadro's number) A mole of gas is Avogadro's number $N_{A}=6 \times 10^{23}$ of molecules. If the gas is in a cubical box, then the chance that each molecule will be in the left half of the cube is $p=1 / 2$. The mean number of molecules there is $\langle n\rangle_{B}=p N_{A}=3 \times 10^{23}$, and the uncertainty in n is $\sigma_{B}=\sqrt{p(1-p) N}=\sqrt{3 \times 10^{23} / 4}=3 \times 10^{11}$. So the numbers of gas molecules in the two halves of the box are equal to within $\sigma_{B} /\langle n\rangle_{B}=10^{-12}$ or to 1 part in 10^{12}.

Because N ! increases very rapidly with N, the rule

$$
\begin{equation*}
P_{B}(n+1, p, N)=\frac{p}{1-p} \frac{N-n}{n+1} P_{B}(n, p, N) \tag{13.50}
\end{equation*}
$$

is helpful when N is big. But when N exceeds a few hundred, the formula (13.43) for $P_{B}(n, p, N)$ becomes unmanageable even in quadruple precision.

One way of computing $P_{B}(n, p, N)$ for large N is to use Srinivasa Ramanujan's correction (4.39) to Stirling's formula $N!\approx \sqrt{2 \pi N}(N / e)^{N}$

$$
\begin{equation*}
N!\approx \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}\left(1+\frac{1}{2 N}+\frac{1}{8 N^{2}}\right)^{1 / 6} \tag{13.51}
\end{equation*}
$$

When N and $N-n$, but not n, are big, one may use (13.51) for N ! and ($N-$ $n)$! in the formula (13.43) for $P_{B}(n, p, N)$ and so may show (exercise 13.11) that

$$
\begin{equation*}
P_{B}(n, p, N) \approx \frac{(p N)^{n}}{n!} q^{N-n} R_{2}(n, N) \tag{13.52}
\end{equation*}
$$

in which

$$
\begin{align*}
R_{2}(n, N)= & \left(1-\frac{n}{N}\right)^{n-1 / 2}\left(1+\frac{1}{2 N}+\frac{1}{8 N^{2}}\right)^{1 / 6} \\
& \times\left[1+\frac{1}{2(N-n)}+\frac{1}{8(N-n)^{2}}\right]^{-1 / 6} \tag{13.53}
\end{align*}
$$

tends to unity as $N \rightarrow \infty$ for any fixed n.
When all three factorials in $P_{B}(n, p, N)$ are huge, one may use Ramanujan's approximation (13.51) to show (exercise 13.12) that

$$
\begin{equation*}
P_{B}(n, p, N) \approx \sqrt{\frac{N}{2 \pi n(N-n)}}\left(\frac{p N}{n}\right)^{n}\left(\frac{q N}{N-n}\right)^{N-n} R_{3}(n, N) \tag{13.54}
\end{equation*}
$$

where

$$
\begin{align*}
R_{3}(n, N)= & \left(1+\frac{1}{2 n}+\frac{1}{8 n^{2}}\right)^{-1 / 6}\left(1+\frac{1}{2 N}+\frac{1}{8 N^{2}}\right)^{1 / 6} \\
& \times\left[1+\frac{1}{2(N-n)}+\frac{1}{8(N-n)^{2}}\right]^{-1 / 6} \tag{13.55}
\end{align*}
$$

tends to unity as $N \rightarrow \infty, N-n \rightarrow \infty$, and $n \rightarrow \infty$.
Another way of coping with the unwieldy factorials in the binomial formula $P_{B}(n, p, N)$ is to use limiting forms of (13.43) due to Poisson and to Gauss.

13.4 The Poisson Distribution

Poisson took the two limits $N \rightarrow \infty$ and $p=\langle n\rangle / N \rightarrow 0$. So we let N and $N-n$, but not n, tend to infinity, and use (13.52) for the binomial distribution (13.43). Since $R_{2}(n, N) \rightarrow 1$ as $N \rightarrow \infty$, we get

$$
\begin{equation*}
P_{B}(n, p, N) \approx \frac{(p N)^{n}}{n!} q^{N-n}=\frac{\langle n\rangle^{n}}{n!} q^{N-n} \tag{13.56}
\end{equation*}
$$

