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is a partial derivative with respect to p with q held fixed
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which verifies the estimate (13.42).
One may show (exercise 13.9) that the variance (13.21) of the binomial

distribution is

VB = h(n� hni)2i = p (1� p)N. (13.47)

Its standard deviation (13.23) is
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The ratio of the width to the mean
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decreases with N as 1/
p
N .

Example 13.5 (Avogadro’s number) A mole of gas is Avogadro’s number
NA = 6⇥ 1023 of molecules. If the gas is in a cubical box, then the chance
that each molecule will be in the left half of the cube is p = 1/2. The mean
number of molecules there is hniB = pNA = 3⇥1023, and the uncertainty in
n is �B =

p
p (1� p)N =

p
3⇥ 1023/4 = 3 ⇥ 1011. So the numbers of gas

molecules in the two halves of the box are equal to within �B/hniB = 10�12

or to 1 part in 1012.

Because N ! increases very rapidly with N , the rule
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is helpful when N is big. But when N exceeds a few hundred, the formula
(13.43) for PB(n, p,N) becomes unmanageable even in quadruple precision.
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One way of computing PB(n, p,N) for large N is to use Srinivasa Ramanu-
jan’s correction (4.39) to Stirling’s formula N ! ⇡

p
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When N and N�n, but not n, are big, one may use (13.51) for N ! and (N�
n)! in the formula (13.43) for PB(n, p,N) and so may show (exercise 13.11)
that
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tends to unity as N ! 1 for any fixed n.
When all three factorials in PB(n, p,N) are huge, one may use Ramanu-

jan’s approximation (13.51) to show (exercise 13.12) that

PB(n, p,N) ⇡
s

N

2⇡n(N � n)

✓
pN

n

◆n ✓
qN

N � n

◆N�n

R3(n,N) (13.54)

where
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tends to unity as N ! 1, N � n ! 1, and n ! 1.
Another way of coping with the unwieldy factorials in the binomial for-

mula PB(n, p,N) is to use limiting forms of (13.43) due to Poisson and to
Gauss.

13.4 The Poisson Distribution

Poisson took the two limits N ! 1 and p = hni/N ! 0. So we let N
and N � n, but not n, tend to infinity, and use (13.52) for the binomial
distribution (13.43). Since R2(n,N) ! 1 as N ! 1, we get

PB(n, p,N) ⇡ (pN)n
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