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gives P (A|B,C) = P (A\B \C)/P (B \C). If we multiply (13.3) by P (B),
we get

P (A,B) = P (A \B) = P (B|A)P (A) = P (A|B)P (B). (13.4)

Combination of (13.3 & 13.4) gives Bayes’s theorem (Riley et al., 2006,
p. 1132)

P (A|B) =
P (B|A)P (A)

P (B)
(13.5)

(Thomas Bayes, 1702–1761).
If the set B of outcomes or events is contained in the union of N mutually

exclusive sets Aj of outcomes, then we must sum over them

P (B) =
NX
j=1

P (B|Aj)P (Aj). (13.6)

The probabilities P (Aj) are called a priori probabilities. In this case,
Bayes’s theorem is (Roe, 2001, p. 119)

P (Ak|B) =
P (B|Ak)P (Ak)PN
j=1 P (B|Aj)P (Aj)

. (13.7)

If there are several B’s, then a third form of Bayes’s theorem is

P (Ak|B`) =
P (B`|Ak)P (Ak)PN
j=1 P (B`|Aj)P (Aj)

. (13.8)

Example 13.1 (The Low-Base-Rate Problem) Suppose the incidence of a
rare disease in a population is P (D) = 0.001. Suppose a test for the disease
has a sensitivity of 99%, that is, the probability that a carrier will test
positive is P (+|D) = 0.99. Suppose the test also is highly selective with
a false-positive rate of only P (+|N) = 0.005. Then the probability that a
random person in the population would test positive is by (13.6)

P (+) = P (+|D)P (D) + P (+|N)P (N) = 0.005993. (13.9)

And by Bayes’s theorem (13.5), the probability that a person who tests
positive actually has the disease is only

P (D|+) =
P (+|D)P (D)

P (+)
=

0.99⇥ 0.001

0.005993
= 0.165 (13.10)

and the probability that a person testing positive actually is healthy is
P (N |+) = 1� P (D|+) = 0.835.
Even with an excellent test, screening for rare diseases is problematic.


