gives $P(A \mid B, C)=P(A \cap B \cap C) / P(B \cap C)$. If we multiply (13.3) by $P(B)$, we get

$$
\begin{equation*}
P(A, B)=P(A \cap B)=P(B \mid A) P(A)=P(A \mid B) P(B) \tag{13.4}
\end{equation*}
$$

Combination of (13.3 \& 13.4) gives Bayes's theorem (Riley et al., 2006, p. 1132)

$$
\begin{equation*}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \tag{13.5}
\end{equation*}
$$

(Thomas Bayes, 1702-1761).
If the set B of outcomes or events is contained in the union of N mutually exclusive sets A_{j} of outcomes, then we must sum over them

$$
\begin{equation*}
P(B)=\sum_{j=1}^{N} P\left(B \mid A_{j}\right) P\left(A_{j}\right) \tag{13.6}
\end{equation*}
$$

The probabilities $P\left(A_{j}\right)$ are called a priori probabilities. In this case, Bayes's theorem is (Roe, 2001, p. 119)

$$
\begin{equation*}
P\left(A_{k} \mid B\right)=\frac{P\left(B \mid A_{k}\right) P\left(A_{k}\right)}{\sum_{j=1}^{N} P\left(B \mid A_{j}\right) P\left(A_{j}\right)} \tag{13.7}
\end{equation*}
$$

If there are several B 's, then a third form of Bayes's theorem is

$$
\begin{equation*}
P\left(A_{k} \mid B_{\ell}\right)=\frac{P\left(B_{\ell} \mid A_{k}\right) P\left(A_{k}\right)}{\sum_{j=1}^{N} P\left(B_{\ell} \mid A_{j}\right) P\left(A_{j}\right)} \tag{13.8}
\end{equation*}
$$

Example 13.1 (The Low-Base-Rate Problem) Suppose the incidence of a rare disease in a population is $P(D)=0.001$. Suppose a test for the disease has a sensitivity of 99%, that is, the probability that a carrier will test positive is $P(+\mid D)=0.99$. Suppose the test also is highly selective with a false-positive rate of only $P(+\mid N)=0.005$. Then the probability that a random person in the population would test positive is by (13.6)

$$
\begin{equation*}
P(+)=P(+\mid D) P(D)+P(+\mid N) P(N)=0.005993 \tag{13.9}
\end{equation*}
$$

And by Bayes's theorem (13.5), the probability that a person who tests positive actually has the disease is only

$$
\begin{equation*}
P(D \mid+)=\frac{P(+\mid D) P(D)}{P(+)}=\frac{0.99 \times 0.001}{0.005993}=0.165 \tag{13.10}
\end{equation*}
$$

and the probability that a person testing positive actually is healthy is $P(N \mid+)=1-P(D \mid+)=0.835$.

Even with an excellent test, screening for rare diseases is problematic.

