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If we substitute our formula (13.169) for (v?(t)) into the expression (13.123)
for the acceleration of (r2), then we get
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The solution with both (r?(0)) = 0 and d(r?(0))/dt = 0 is (exercise 13.21)
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13.12 Characteristic and Moment-Generating Functions

The Fourier transform (3.9) of a probability distribution P(z) is its char-
acteristic function P(k) sometimes written as (k)

P(k) = x(k) = E[e**] = /eikx P(z)dz. (13.173)
The probability distribution P(x) is the inverse Fourier transform (3.9)
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Example 13.10 (Gauss) The characteristic function of the gaussian
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For a discrete probability distribution P, the characteristic function is
x(k) = E[e*®] = Z ekin p (13.177)
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The normalization of both continuous and discrete probability distributions
implies that their characteristic functions satisfy P(0) = x(0) = 1.



