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If we substitute our formula (13.169) for hv2(t)i into the expression (13.123)
for the acceleration of hr2i, then we get
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The solution with both hr2(0)i = 0 and dhr2(0)i/dt = 0 is (exercise 13.21)
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13.12 Characteristic and Moment-Generating Functions

The Fourier transform (3.9) of a probability distribution P (x) is its char-
acteristic function P̃ (k) sometimes written as �(k)
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The probability distribution P (x) is the inverse Fourier transform (3.9)
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Example 13.10 (Gauss) The characteristic function of the gaussian
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is by (3.18)
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For a discrete probability distribution Pn the characteristic function is
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n

eikxn Pn. (13.177)

The normalization of both continuous and discrete probability distributions
implies that their characteristic functions satisfy P̃ (0) = �(0) = 1.


