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�qi, one may show (exercise 12.10) that this sum of areas remains constant

d

dt
d!1(�p, �q;�p,�q) = 0 (12.77)

along the trajectories in phase space (Gutzwiller, 1990, chap. 7).

Example 12.12 (The Curl) We saw in example 12.7 that the 1-form
(12.50) of a vector field A is !A = A
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the hk’s are those that determine (12.44) the squared length ds2 = h2k dx
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of the triply orthogonal coordinate system with unit vectors ê1, ê2, ê3. So
the exterior derivative of the 1-form !A is
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Comparison with Eq. (12.52) shows that the curl of A is
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as we saw in (11.240). This formula gives our earlier expressions for the curl
in cylindrical and spherical coordinates (11.241 & 11.242).

Example 12.13 (The Divergence) We have seen in equations (12.48,
12.49, & 12.52) that the 2-form !A(U, V ) = A · (U ⇥ V ) of the vector field
A = A

1
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ê2 +A
3
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