Δq_{i}, one may show (exercise 12.10) that this sum of areas remains constant

$$
\begin{equation*}
\frac{d}{d t} d \omega^{1}(\delta p, \delta q ; \Delta p, \Delta q)=0 \tag{12.77}
\end{equation*}
$$

along the trajectories in phase space (Gutzwiller, 1990, chap. 7).
Example 12.12 (The Curl) We saw in example 12.7 that the 1 -form (12.50) of a vector field \boldsymbol{A} is $\omega_{A}=A_{1} h_{1} d x_{1}+A_{2} h_{2} d x_{2}+A_{3} h_{3} d x_{3}$ in which the h_{k} 's are those that determine (12.44) the squared length $d s^{2}=h_{k}^{2} d x_{k}^{2}$ of the triply orthogonal coordinate system with unit vectors $\hat{\boldsymbol{e}}_{\mathbf{1}}, \hat{\boldsymbol{e}}_{\mathbf{2}}, \hat{\boldsymbol{e}}_{\mathbf{3}}$. So the exterior derivative of the 1 -form ω_{A} is

$$
\begin{align*}
d \omega_{A}= & \sum_{i, k=1}^{3} \partial_{k}\left(A_{i} h_{i}\right) d x_{k} \wedge d x_{i} \\
= & {\left[\frac{\partial\left(A_{3} h_{3}\right)}{\partial x_{2}}-\frac{\partial\left(A_{2} h_{2}\right)}{\partial x_{3}}\right] d x_{2} \wedge d x_{3} } \\
& +\left[\frac{\partial\left(A_{2} h_{2}\right)}{\partial x_{1}}-\frac{\partial\left(A_{1} h_{1}\right)}{\partial x_{2}}\right] d x_{1} \wedge d x_{2} \\
& +\left[\frac{\partial A_{1} h_{1}}{\partial x_{3}}-\frac{\partial\left(A_{3} h_{3}\right)}{\partial x_{1}}\right] d x_{3} \wedge d x_{1} \equiv \omega_{\nabla \times \boldsymbol{A}} \tag{12.78}
\end{align*}
$$

Comparison with Eq. (12.52) shows that the curl of \boldsymbol{A} is

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{A} & =\frac{1}{h_{2} h_{3}}\left(\frac{\partial A_{3} h_{3}}{\partial x_{2}}-\frac{\partial A_{2} h_{2}}{\partial_{3}}\right) d x_{2} \wedge d x_{3} \hat{\boldsymbol{e}}_{\mathbf{1}}+\ldots \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{\boldsymbol{e}}_{\mathbf{1}} & h_{2} \hat{\boldsymbol{e}}_{\mathbf{2}} & h_{3} \hat{e}_{\mathbf{3}} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
A_{1} h_{1} & A_{2} h_{2} & A_{3} h_{3}
\end{array}\right| \\
& =\frac{1}{h_{1} h_{2} h_{3}} \sum_{i, j, k=1}^{3} \epsilon_{i j k} h_{i} \hat{\boldsymbol{e}}_{\boldsymbol{i}} \frac{\partial\left(A_{k} h_{k}\right)}{\partial x_{j}} \tag{12.79}
\end{align*}
$$

as we saw in (11.240). This formula gives our earlier expressions for the curl in cylindrical and spherical coordinates (11.241 \& 11.242).

Example 12.13 (The Divergence) We have seen in equations (12.48, $12.49, \& 12.52)$ that the 2 -form $\omega_{A}(U, V)=A \cdot(U \times V)$ of the vector field $\boldsymbol{A}=A_{1} \hat{\boldsymbol{e}}_{\mathbf{1}}+A_{2} \hat{\boldsymbol{e}}_{\mathbf{2}}+A_{3} \hat{\boldsymbol{e}}_{\mathbf{3}}$ is

$$
\begin{equation*}
\omega_{A}^{2}=A_{1} h_{2} h_{3} d x_{2} \wedge d x_{3}+A_{2} h_{3} h_{1} d x_{3} \wedge d x_{1}+A_{3} h_{1} h_{2} d x_{1} \wedge d x_{2} \tag{12.80}
\end{equation*}
$$

