sets of basic differentials. Then by applying the formula (12.24) to the function $y_{k}(x)$, we get

$$
\begin{equation*}
d y_{k}=\sum_{j=1}^{n} \frac{\partial y_{k}(x)}{\partial x_{j}} d x_{j} \tag{12.32}
\end{equation*}
$$

which is the familiar rule for changing variables.
The most general differential 1-form ω on the space \mathbb{R}^{n} with coordinates $x_{1} \ldots x_{n}$ is a linear combination of the basic differentials $d x_{i}$ with coefficients $a_{i}(x)$ that are smooth functions of $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{equation*}
\omega=a_{1}(x) d x_{1}+\ldots a_{n}(x) d x_{n} . \tag{12.33}
\end{equation*}
$$

The basic differential 2-forms are $d x_{i} \wedge d x_{k}$ defined as

$$
d x_{i} \wedge d x_{k}(A, B)=\left|\begin{array}{cc}
d x_{i}(A) & d x_{k}(A) \tag{12.34}\\
d x_{i}(B) & d x_{k}(B)
\end{array}\right|=\left|\begin{array}{cc}
A_{i} & A_{k} \\
B_{i} & B_{k}
\end{array}\right|=A_{i} B_{k}-A_{k} B_{i} .
$$

So in particular

$$
\begin{equation*}
d x_{i} \wedge d x_{i}=0 \tag{12.35}
\end{equation*}
$$

The basic differential k-forms $d x_{1} \wedge \cdots \wedge d x_{k}$ are defined as

$$
d x_{1} \wedge \ldots d x_{k}\left(A_{1}, \ldots A_{k}\right)=\left|\begin{array}{ccc}
d x_{1}\left(A_{1}\right) & \ldots & d x_{k}\left(A_{1}\right) \tag{12.36}\\
\vdots & \ddots & \vdots \\
d x_{1}\left(A_{k}\right) & \ldots & d x_{k}\left(A_{k}\right)
\end{array}\right|=\left|\begin{array}{ccc}
A_{11} & \ldots & A_{1 k} \\
\vdots & \ddots & \vdots \\
A_{k 1} & \ldots & A_{k k}
\end{array}\right| .
$$

Example $12.4\left(d x_{3} \wedge d r^{2}\right)$ If $r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, then $d r^{2}$ is

$$
\begin{equation*}
d r^{2}=2\left(x_{1} d x_{1}+x_{2} d x_{2}+x_{3} d x_{3}\right) \tag{12.37}
\end{equation*}
$$

and the differential 2-form $\omega=d x_{3} \wedge d r^{2}$ is

$$
\begin{equation*}
\omega=d x_{3} \wedge 2\left(x_{1} d x_{1}+x_{2} d x_{2}+x_{3} d x_{3}\right)=2 x_{1} d x_{3} \wedge d x_{1}+2 x_{2} d x_{3} \wedge d x_{2} \tag{12.38}
\end{equation*}
$$

since in view of (12.35) $d x_{3} \wedge d x_{3}=0$. So the value of the 2 -form ω on the vectors $A=(1,2,3)$ and $B=(2,1,1)$ at the point $x=(3,0,3)$ is

$$
\omega(A, B)=2 x_{1} d x_{3} \wedge d x_{1}(A, B)=6\left|\begin{array}{ll}
d x_{3}(A) & d x_{1}(A) \tag{12.39}\\
d x_{3}(B) & d x_{1}(B)
\end{array}\right|=6\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|=30 .
$$

On the vectors, $C=(1,0,0)$ and $D=(0,0,1)$ at $x=(2,3,4)$, this 2-form has the value $\omega(C, D)=-4$.

