$d \rho, d \phi$, and $d z$, and so derive the expressions (11.169) for the orthonormal basis vectors $\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\phi}}$, and $\hat{\boldsymbol{z}}$.
11.14 Similarly, derive (11.175) from (11.174).
11.15 Use the definition (11.191) to show that in flat 3-space, the dual of the Hodge dual is the identity: $* * d x^{i}=d x^{i}$ and $* *\left(d x^{i} \wedge d x^{k}\right)=d x^{i} \wedge d x^{k}$.
11.16 Use the definition of the Hodge star (11.202) to derive (a) two of the four identities (11.203) and (b) the other two.
11.17 Show that Levi-Civita's 4 -symbol obeys the identity (11.207).
11.18 Show that $\epsilon_{\ell m n} \epsilon^{p m n}=2 \delta_{\ell}^{p}$.
11.19 Show that $\epsilon_{k \ell m n} \epsilon^{p \ell m n}=3!\delta_{k}^{p}$.
11.20 Using the formulas (11.175) for the basis vectors of spherical coordinates in terms of those of rectangular coordinates, compute the derivatives of the unit vectors $\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}$, and $\hat{\boldsymbol{\phi}}$ with respect to the variables r, θ, and ϕ. Your formulas should express these derivatives in terms of the basis vectors $\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}$, and $\hat{\boldsymbol{\phi}}$. (b) Using the formulas of (a) and our expression (6.28) for the gradient in spherical coordinates, derive the formula (11.297) for the laplacian $\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}$.
11.21 Consider the torus with coordinates θ, ϕ labeling the arbitrary point

$$
\begin{equation*}
\boldsymbol{p}=(\cos \phi(R+r \sin \theta), \sin \phi(R+r \sin \theta), r \cos \theta) \tag{11.505}
\end{equation*}
$$

in which $R>r$. Both θ and ϕ run from 0 to 2π. (a) Find the basis vectors e_{θ} and e_{ϕ}. (b) Find the metric tensor and its inverse.
11.22 For the same torus, (a) find the dual vectors e^{θ} and e^{ϕ} and (b) find the nonzero connections $\Gamma_{j k}^{i}$ where $i, j, \& k$ take the values $\theta \& \phi$.
11.23 For the same torus, (a) find the two Christoffel matrices Γ_{θ} and Γ_{ϕ}, (b) find their commutator [$\Gamma_{\theta}, \Gamma_{\phi}$], and (c) find the elements $R_{\theta \theta \theta}^{\theta}, R_{\theta \phi \theta}^{\phi}$, $R_{\phi \theta \phi}^{\theta}$, and $R_{\phi \phi \phi}^{\phi}$ of the curvature tensor.
11.24 Find the curvature scalar R of the torus with points (11.505). Hint: In these four problems, you may imitate the corresponding calculation for the sphere in Sec. 11.42.
11.25 By differentiating the identity $g^{i k} g_{k \ell}=\delta_{\ell}^{i}$, show that $\delta g^{i k}=-$ $g^{i s} g^{k t} \delta g_{s t}$ or equivalently that $d g^{i k}=-g^{i s} g^{k t} d g_{s t}$.
11.26 Just to get an idea of the sizes involved in black holes, imagine an isolated sphere of matter of uniform density ρ that as an initial condition is all at rest within a radius r_{b}. Its radius will be less than its Schwarzschild radius if

$$
\begin{equation*}
r_{b}<\frac{2 M G}{c^{2}}=2\left(\frac{4}{3} \pi r_{b}^{3} \rho\right) \frac{G}{c^{2}} . \tag{11.506}
\end{equation*}
$$

If the density ρ is that of water under standard conditions (1 gram per
cc), for what range of radii r_{b} might the sphere be or become a black hole? Same question if ρ is the density of dark energy.
11.27 For the points (11.392), derive the metric (11.395) with $k=1$. Don't forget to relate $d \chi$ to $d r$.
11.28 For the points (11.393), derive the metric (11.395) with $k=0$.
11.29 For the points (11.394), derive the metric (11.395) with $k=-1$. Don't forget to relate $d \chi$ to $d r$.
11.30 Suppose the constant k in the Roberson-Walker metric (11.391 or 11.395) is some number other than 0 or ± 1. Find a coordinate transformation such that in the new coordinates, the Roberson-Walker metric has $k=k /|k|= \pm 1$. Hint: You also can change the scale factor a.
11.31 Derive the affine connections in Eq.(11.399).
11.32 Derive the affine connections in Eq.(11.400).
11.33 Derive the affine connections in Eq.(11.401).
11.34 Derive the spatial Einstein equation (11.411) from (11.375, 11.395, $11.406,11.408, \& 11.409)$.
11.35 Assume there had been no inflation, no era of radiation, and no dark energy. In this case, the magnitude of the difference $|\Omega-1|$ would have increased as $t^{2 / 3}$ over the past 13.8 billion years. Show explicitly how close to unity Ω would have had to have been at $t=1 \mathrm{~s}$ so as to satisfy the observational constraint $\left|\Omega_{0}-1\right|<0.036$ on the present value of Ω.
11.36 Derive the relation (11.431) between the energy density ρ and the Robertson-Walker scale factor $a(t)$ from the conservation law (11.427) and the equation of state $p=w \rho$.
11.37 Use the Friedmann equations (11.410 \& 11.412) for constant $\rho=-p$ and $k=1$ to derive (11.438) subject to the boundary condition that $a(t)$ has its minimum at $t=0$.
11.38 Use the Friedmann equations (11.410\& 11.412) with $w=-1, \rho$ constant, and $k=-1$ to derive (11.439) subject to the boundary condition that $a(0)=0$.
11.39 Use the Friedmann equations (11.410\& 11.412) with $w=-1, \rho$ constant, and $k=0$ to derive (11.440). Show why a linear combination of the two solutions (11.440) does not work.
11.40 Use the conservation equation (11.444) and the Friedmann equations (11.410 \& 11.412) with $w=1 / 3, k=0$, and $a(0)=0$ to derive (11.447).
11.41 Show that if the matrix $U(x)$ is nonsingular, then

$$
\begin{equation*}
\left(\partial_{i} U\right) U^{-1}=-U \partial_{i} U^{-1} \tag{11.507}
\end{equation*}
$$

11.42 The gauge-field matrix is a linear combination $A_{k}=-i g t^{b} A_{k}^{b}$ of the

