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d⇢, d�, and dz, and so derive the expressions (11.169) for the orthonor-
mal basis vectors ⇢̂, �̂, and ẑ.

11.14 Similarly, derive (11.175) from (11.174).
11.15 Use the definition (11.191) to show that in flat 3-space, the dual of the

Hodge dual is the identity: ⇤⇤dxi = dxi and ⇤⇤(dxi^dxk) = dxi^dxk.
11.16 Use the definition of the Hodge star (11.202) to derive (a) two of the

four identities (11.203) and (b) the other two.
11.17 Show that Levi-Civita’s 4-symbol obeys the identity (11.207).
11.18 Show that ✏`mn ✏pmn = 2 �p` .
11.19 Show that ✏k`mn ✏p`mn = 3! �pk.
11.20 Using the formulas (11.175) for the basis vectors of spherical coordi-

nates in terms of those of rectangular coordinates, compute the deriva-
tives of the unit vectors r̂, ✓̂, and �̂ with respect to the variables r,
✓, and �. Your formulas should express these derivatives in terms of
the basis vectors r̂, ✓̂, and �̂. (b) Using the formulas of (a) and our
expression (6.28) for the gradient in spherical coordinates, derive the
formula (11.297) for the laplacian r ·r.

11.21 Consider the torus with coordinates ✓,� labeling the arbitrary point

p = (cos�(R+ r sin ✓), sin�(R+ r sin ✓), r cos ✓) (11.505)

in which R > r. Both ✓ and � run from 0 to 2⇡. (a) Find the basis
vectors e✓ and e�. (b) Find the metric tensor and its inverse.

11.22 For the same torus, (a) find the dual vectors e✓ and e� and (b) find
the nonzero connections �i

jk where i, j, & k take the values ✓&�.
11.23 For the same torus, (a) find the two Christo↵el matrices �✓ and ��,

(b) find their commutator [�✓,��], and (c) find the elements R✓
✓✓✓, R

�
✓�✓,

R✓
�✓�, and R�

��� of the curvature tensor.
11.24 Find the curvature scalar R of the torus with points (11.505). Hint:

In these four problems, you may imitate the corresponding calculation
for the sphere in Sec. 11.42.

11.25 By di↵erentiating the identity gik gk` = �i`, show that �gik = �
gisgkt�gst or equivalently that dgik = � gisgktdgst.

11.26 Just to get an idea of the sizes involved in black holes, imagine an
isolated sphere of matter of uniform density ⇢ that as an initial con-
dition is all at rest within a radius rb. Its radius will be less than its
Schwarzschild radius if

rb <
2MG
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If the density ⇢ is that of water under standard conditions (1 gram per
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cc), for what range of radii rb might the sphere be or become a black
hole? Same question if ⇢ is the density of dark energy.

11.27 For the points (11.392), derive the metric (11.395) with k = 1. Don’t
forget to relate d� to dr.

11.28 For the points (11.393), derive the metric (11.395) with k = 0.

11.29 For the points (11.394), derive the metric (11.395) with k = �1. Don’t
forget to relate d� to dr.

11.30 Suppose the constant k in the Roberson-Walker metric (11.391 or
11.395) is some number other than 0 or ±1. Find a coordinate transfor-
mation such that in the new coordinates, the Roberson-Walker metric
has k = k/|k| = ±1. Hint: You also can change the scale factor a.

11.31 Derive the a�ne connections in Eq.(11.399).

11.32 Derive the a�ne connections in Eq.(11.400).

11.33 Derive the a�ne connections in Eq.(11.401).

11.34 Derive the spatial Einstein equation (11.411) from (11.375, 11.395,
11.406, 11.408, & 11.409).

11.35 Assume there had been no inflation, no era of radiation, and no dark
energy. In this case, the magnitude of the di↵erence |⌦�1| would have
increased as t2/3 over the past 13.8 billion years. Show explicitly how
close to unity ⌦ would have had to have been at t = 1 s so as to satisfy
the observational constraint |⌦

0

� 1| < 0.036 on the present value of ⌦.

11.36 Derive the relation (11.431) between the energy density ⇢ and the
Robertson-Walker scale factor a(t) from the conservation law (11.427)
and the equation of state p = w⇢.

11.37 Use the Friedmann equations (11.410 & 11.412) for constant ⇢ = �p
and k = 1 to derive (11.438) subject to the boundary condition that
a(t) has its minimum at t = 0.

11.38 Use the Friedmann equations (11.410 & 11.412) with w = �1, ⇢ con-
stant, and k = �1 to derive (11.439) subject to the boundary condition
that a(0) = 0.

11.39 Use the Friedmann equations (11.410 & 11.412) with w = �1, ⇢
constant, and k = 0 to derive (11.440). Show why a linear combination
of the two solutions (11.440) does not work.

11.40 Use the conservation equation (11.444) and the Friedmann equations
(11.410 & 11.412) with w = 1/3, k = 0, and a(0) = 0 to derive (11.447).

11.41 Show that if the matrix U(x) is nonsingular, then

(@i U)U�1 = � U @i U
�1. (11.507)

11.42 The gauge-field matrix is a linear combination Ak = �ig tbAb
k of the


