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in which G = 6.7087⇥ 10�39 ~c (GeV/c2)�2 = 6.6742⇥ 10�11m3 kg�1 s�2 is
Newton’s constant. Taking the trace and using gji gij = �jj = 4, we relate

the scalar curvature to the trace T = T i
i of the energy-momentum tensor

R =
8⇡G

c4
T. (11.377)

So another form of Einstein’s equations (11.376) is
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On small scales, such as that of our solar system, one may neglect dark
energy. So in empty space and on small scales, the energy-momentum tensor
vanishes Tij = 0 along with its trace and the scalar curvature T = 0 = R,
and Einstein’s equations are

Rij = 0. (11.379)

11.44 The Action of General Relativity

If we make an action that is a scalar, invariant under general coordinate
transformations, and then apply to it the principle of stationary action, we
will get tensor field equations that are invariant under general coordinate
transformations. If the metric of space-time is among the fields of the action,
then the resulting theory will be a possible theory of gravity. If we make
the action as simple as possible, it will be Einstein’s theory.
To make the action of the gravitational field, we need a scalar. Apart

from the volume 4-form ⇤1 =
p
g d4x=

p
g c dt d3x, the simplest scalar we

can form from the metric tensor and its first and second derivatives is the
scalar curvature R which gives us the Einstein-Hilbert action
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If �gik(x) is a tiny change in the inverse metric, then we may write the
first-order change in the action SEH as (exercise 11.45)
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Thus the principle of least action �SEH = 0 leads to Einstein’s equations

Gik ⌘Rik �
1

2
gik R = 0 (11.382)



11.45 Standard Form 495

for empty space in which Gik is Einstein’s tensor.
The stress-energy tensor Tik is defined so that the change in the action of

the matter fields due to a tiny change �gik(x) (vanishing at infinity) in the
metric is

�Sm = � 1
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p
g �gik d4x. (11.383)

So the principle of least action �S = �SEH + �Sm = 0 implies Einstein’s
equations (11.376, 11.378) in the presence of matter and energy
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11.45 Standard Form

Tensor equations are independent of the choice of coordinates, so it’s wise
to choose coordinates that simplify one’s work. For a static and isotropic
gravitational field, this choice is the standard form (Weinberg, 1972, ch. 8)

d⌧2 = B(r) dt2 �A(r) dr2 � r2
�
d✓2 + sin2 ✓ d�2

�
(11.385)

in which c = 1, and B(r) and A(r) are functions that one may find by solving
the field equations (11.376). Since d⌧2 = � ds2 = �gij dxidxj , the nonzero
components of the metric tensor are grr = A(r), g✓✓ = r2, g�� = r2 sin2 ✓,
and g00 = �B(r), and those of its inverse are grr = A�1(r), g✓✓ = r�2,
g�� = r�2 sin�2 ✓, and g00 = �B�1(r). By di↵erentiating the metric tensor
and using (11.255), one gets the components of the connection �i

k`, such as
�✓
�� = � sin ✓ cos ✓, and the components (11.353) of the Ricci tensor Rij ,

such as (Weinberg, 1972, ch. 8)
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in which the primes mean d/dr.

11.46 Schwarzschild’s Solution

If one ignores the small dark-energy parameter ⇤, one may solve Einstein’s
field equations (11.379) in empty space

Rij = 0 (11.387)


